1887

Abstract

As the field of synthetic biology develops, real-world applications are moving from the realms of ideas and laboratory-confined research towards implementation. A pressing concern, particularly with microbial systems, is that self-replicating re-engineered cells may produce undesired consequences if they escape or overwhelm their intended environment. To address this biosafety issue, multiple mechanisms for constraining microbial replication and horizontal gene transfer have been proposed. These include the use of host–construct dependencies such as toxin–antitoxin pairs, conditional plasmid replication or the requirement for a specific metabolite to be present for cellular function. While refactoring of the existing genetic code or tailoring of orthogonal systems, e.g. xeno nucleic acids, offers future promise of more stringent ‘firewalls’ between natural and synthetic cells, here we focus on what can be achieved using existing technology. The state-of-the-art in designing for biosafety is summarized and general recommendations are made (e.g. short environmental retention times) for current synthetic biology projects to better isolate themselves against potentially negative impacts.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066308-0
2013-07-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1221.html?itemId=/content/journal/micro/10.1099/mic.0.066308-0&mimeType=html&fmt=ahah

References

  1. Acord J., Masters M.. ( 2004;). Expression from the Escherichia coli dapA promoter is regulated by intracellular levels of diaminopimelic acid. FEMS Microbiol Lett235:131–137 [CrossRef][PubMed]
    [Google Scholar]
  2. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L. & Mori, H. (2006).2
  3. Bej A. K., Perlin M. H., Atlas R. M.. ( 1988;). Model suicide vector for containment of genetically engineered microorganisms. Appl Environ Microbiol54:2472–2477[PubMed]
    [Google Scholar]
  4. Benner S. A., Sismour A. M.. ( 2005;). Synthetic biology. Nat Rev Genet6:533–543 [CrossRef][PubMed]
    [Google Scholar]
  5. Bensasson D., Boore J. L., Nielsen K. M.. ( 2004;). Genes without frontiers?. Heredity (Edinb)92:483–489 [CrossRef][PubMed]
    [Google Scholar]
  6. Berg P., Singer M. F.. ( 1995;). The recombinant DNA controversy: twenty years later. Proc Natl Acad Sci U S A92:9011–9013 [CrossRef][PubMed]
    [Google Scholar]
  7. Berg P., Baltimore D., Brenner S., Roblin R. O., Singer M. F.. ( 1975;). Summary statement of the Asilomar conference on recombinant DNA molecules. Proc Natl Acad Sci U S A72:1981–1984 [CrossRef][PubMed]
    [Google Scholar]
  8. Bernard P., Couturier M.. ( 1992;). Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol226:735–745 [CrossRef][PubMed]
    [Google Scholar]
  9. Bernard P., Gabarit P., Bahassi E. M., Couturier M.. ( 1994;). Positive-selection vectors using the F plasmid ccdB killer gene. Gene148:71–74 [CrossRef][PubMed]
    [Google Scholar]
  10. Bhattachary, D., Calitz, J. P. & Hunter, A. (2010).http://www.bbsrc.ac.uk/syntheticbiologydialogue/
  11. Blattner F. R., Plunkett G. III, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K. et al. ( 1997;). The complete genome sequence of Escherichia coli K-12. Science277:1453–1462 [CrossRef][PubMed]
    [Google Scholar]
  12. Blower T. R., Pei X. Y., Short F. L., Fineran P. C., Humphreys D. P., Luisi B. F., Salmond G. P. C.. ( 2011;). A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nat Struct Mol Biol18:185–190 [CrossRef][PubMed]
    [Google Scholar]
  13. Blower T. R., Short F. L., Rao F., Mizuguchi K., Pei X. Y., Fineran P. C., Luisi B. F., Salmond G. P. C.. ( 2012;). Identification and classification of bacterial Type III toxin–antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res40:6158–6173 [CrossRef][PubMed]
    [Google Scholar]
  14. Boschetti C., Carr A., Crisp A., Eyres I., Wang-Koh Y., Lubzens E., Barraclough T. G., Micklem G., Tunnacliffe A.. ( 2012;). Biochemical diversification through foreign gene expression in bdelloid rotifers. PLoS Genet8:e1003035 [CrossRef][PubMed]
    [Google Scholar]
  15. Brantl S.. ( 2012;). Bacterial type I toxin–antitoxin systems. RNA Biol9:1488–1490 [CrossRef][PubMed]
    [Google Scholar]
  16. Brodersen D. E., Clemons W. M. Jr, Carter A. P., Morgan-Warren R. J., Wimberly B. T., Ramakrishnan V.. ( 2000;). The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell103:1143–1154 [CrossRef][PubMed]
    [Google Scholar]
  17. Brune K. D., Bayer T. S.. ( 2012;). Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol3:203 [CrossRef][PubMed]
    [Google Scholar]
  18. Callura J. M., Dwyer D. J., Isaacs F. J., Cantor C. R., Collins J. J.. ( 2010;). Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. Proc Natl Acad Sci U S A107:15898–15903 [CrossRef][PubMed]
    [Google Scholar]
  19. Cascales E., Buchanan S. K., Duché D., Kleanthous C., Lloubès R., Postle K., Riley M., Slatin S., Cavard D.. ( 2007;). Colicin biology. Microbiol Mol Biol Rev71:158–229 [CrossRef][PubMed]
    [Google Scholar]
  20. Cases I., de Lorenzo V.. ( 2005;). Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol8:213–222[PubMed]
    [Google Scholar]
  21. Catalão M. J., Gil F., Moniz-Pereira J., São-José C., Pimentel M.. ( 2013;). Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev37:554–571[CrossRef]
    [Google Scholar]
  22. Chang T. M., Prakash S.. ( 2001;). Procedures for microencapsulation of enzymes, cells and genetically engineered microorganisms. Mol Biotechnol17:249–260 [CrossRef][PubMed]
    [Google Scholar]
  23. Chin J. W.. ( 2012;). Reprogramming the genetic code. Science336:428–429 [CrossRef][PubMed]
    [Google Scholar]
  24. Church G.. ( 2005;). Let us go forth and safely multiply. Nature438:423 [CrossRef][PubMed]
    [Google Scholar]
  25. Cole E. C., Addison R. M., Rubino J. R., Leese K. E., Dulaney P. D., Newell M. S., Wilkins J., Gaber D. J., Wineinger T., Criger D. A.. ( 2003;). Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers. J Appl Microbiol95:664–676 [CrossRef][PubMed]
    [Google Scholar]
  26. Contreras A., Molin S., Ramos J. L.. ( 1991;). Conditional-suicide containment system for bacteria which mineralize aromatics. Appl Environ Microbiol57:1504–1508[PubMed]
    [Google Scholar]
  27. Cotter P. D., Hill C., Ross R. P.. ( 2005;). Bacteriocins: developing innate immunity for food. Nat Rev Microbiol3:777–788 [CrossRef][PubMed]
    [Google Scholar]
  28. Cranenburgh R. M., Hanak J. A., Williams S. G., Sherratt D. J.. ( 2001;). Escherichia coli strains that allow antibiotic-free plasmid selection and maintenance by repressor titration. Nucleic Acids Res29:e26 [CrossRef][PubMed]
    [Google Scholar]
  29. Cranenburgh R. M., Lewis K. S., Hanak J. A. J.. ( 2004;). Effect of plasmid copy number and lac operator sequence on antibiotic-free plasmid selection by operator–repressor titration in Escherichia coli . J Mol Microbiol Biotechnol7:197–203 [CrossRef][PubMed]
    [Google Scholar]
  30. Cummings H. S., Hershey J. W.. ( 1994;). Translation initiation factor IF1 is essential for cell viability in Escherichia coli . J Bacteriol176:198–205[PubMed]
    [Google Scholar]
  31. Dana G. V., Kuiken T., Rejeski D., Snow A. A.. ( 2012;). Synthetic biology: four steps to avoid a synthetic-biology disaster. Nature483:29– [CrossRef][PubMed]
    [Google Scholar]
  32. Davison J.. ( 1999;). Genetic exchange between bacteria in the environment. Plasmid42:73–91 [CrossRef][PubMed]
    [Google Scholar]
  33. de Lorenzo V.. ( 2010;). Environmental biosafety in the age of synthetic biology: do we really need a radical new approach? Environmental fates of microorganisms bearing synthetic genomes could be predicted from previous data on traditionally engineered bacteria for in situ bioremediation. Bioessays32:926–931 [CrossRef][PubMed]
    [Google Scholar]
  34. Degryse E.. ( 1991;). Stability of a host–vector system based on complementation of an essential gene in Escherichia coli . J Biotechnol18:29–39 [CrossRef][PubMed]
    [Google Scholar]
  35. del Solar G., Giraldo R., Ruiz-Echevarría M. J., Espinosa M., Díaz-Orejas R.. ( 1998;). Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev62:434–464[PubMed]
    [Google Scholar]
  36. Dewey J. S., Savva C. G., White R. L., Vitha S., Holzenburg A., Young R.. ( 2010;). Micron-scale holes terminate the phage infection cycle. Proc Natl Acad Sci U S A107:2219–2223 [CrossRef][PubMed]
    [Google Scholar]
  37. Diago-Navarro E., Hernandez-Arriaga A. M., López-Villarejo J., Muñoz-Gómez A. J., Kamphuis M. B., Boelens R., Lemonnier M., Díaz-Orejas R.. ( 2010;). parD toxin–antitoxin system of plasmid R1 – basic contributions, biotechnological applications and relationships with closely-related toxin–antitoxin systems. FEBS J277:3097–3117 [CrossRef][PubMed]
    [Google Scholar]
  38. Dröge M., Pühler A., Selbitschka W.. ( 1998;). Horizontal gene transfer as a biosafety issue: a natural phenomenon of public concern. J Biotechnol64:75–90 [CrossRef][PubMed]
    [Google Scholar]
  39. Durand S., Jahn N., Condon C., Brantl S.. ( 2012;). Type I toxin–antitoxin systems in Bacillus subtilis . RNA Biol9:1491–1497 [CrossRef][PubMed]
    [Google Scholar]
  40. Fiedler M., Skerra A.. ( 2001;). proBA complementation of an auxotrophic E. coli strain improves plasmid stability and expression yield during fermenter production of a recombinant antibody fragment. Gene274:111–118 [CrossRef][PubMed]
    [Google Scholar]
  41. Filutowicz M., McEachern M. J., Helinski D. R.. ( 1986;). Positive and negative roles of an initiator protein at an origin of replication. Proc Natl Acad Sci U S A83:9645–9649 [CrossRef][PubMed]
    [Google Scholar]
  42. Fineran P. C., Blower T. R., Foulds I. J., Humphreys D. P., Lilley K. S., Salmond G. P. C.. ( 2009;). The phage abortive infection system, ToxIN, functions as a protein–RNA toxin–antitoxin pair. Proc Natl Acad Sci U S A106:894–899 [CrossRef][PubMed]
    [Google Scholar]
  43. French, C. E., de Mora, K., Joshi, N., Elfick, A., Haseloff, J. & Ajioka, J. (2011).Institute of Medicine (US) Forum on Microbial Threats. The Science and Applications of Synthetic and Systems Biology: Workshop Summaryhttp://www.ncbi.nlm.nih.gov/books/NBK84465/
  44. Friedland A. E., Lu T. K., Wang X., Shi D., Church G., Collins J. J.. ( 2009;). Synthetic gene networks that count. Science324:1199–1202 [CrossRef][PubMed]
    [Google Scholar]
  45. Garmory H. S., Leckenby M. W., Griffin K. F., Elvin S. J., Taylor R. R., Hartley M. G., Hanak J. A. J., Williamson E. D., Cranenburgh R. M.. ( 2005;). Antibiotic-free plasmid stabilization by operator–repressor titration for vaccine delivery by using live Salmonella enterica Serovar typhimurium. Infect Immun73:2005–2011 [CrossRef][PubMed]
    [Google Scholar]
  46. Garrett J., Bruno C., Young R.. ( 1990;). Lysis protein S of phage lambda functions in Saccharomyces cerevisiae . J Bacteriol172:7275–7277[PubMed]
    [Google Scholar]
  47. Gerdes K., Maisonneuve E.. ( 2012;). Bacterial persistence and toxin–antitoxin loci. Annu Rev Microbiol66:103–123 [CrossRef][PubMed]
    [Google Scholar]
  48. Gerdes K., Wagner E. G. H.. ( 2007;). RNA antitoxins. Curr Opin Microbiol10:117–124 [CrossRef][PubMed]
    [Google Scholar]
  49. Gerdes K., Gultyaev A. P., Franch T., Pedersen K., Mikkelsen N. D.. ( 1997;). Antisense RNA-regulated programmed cell death. Annu Rev Genet31:1–31 [CrossRef][PubMed]
    [Google Scholar]
  50. Gibson D. G., Glass J. I., Lartigue C., Noskov V. N., Chuang R.-Y., Algire M. A., Benders G. A., Montague M. G., Ma L. et al. ( 2010;). Creation of a bacterial cell controlled by a chemically synthesized genome. Science329:52–56 [CrossRef][PubMed]
    [Google Scholar]
  51. Glick B. R.. ( 1995;). Metabolic load and heterologous gene expression. Biotechnol Adv13:247–261 [CrossRef][PubMed]
    [Google Scholar]
  52. Goh S., Good L.. ( 2008;). Plasmid selection in Escherichia coli using an endogenous essential gene marker. BMC Biotechnol8:61 [CrossRef][PubMed]
    [Google Scholar]
  53. Grady R., Hayes F.. ( 2003;). Axe–Txe, a broad-spectrum proteic toxin–antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium . Mol Microbiol47:1419–1432 [CrossRef][PubMed]
    [Google Scholar]
  54. Greene P. J., Gupta M., Boyer H. W., Brown W. E., Rosenberg J. M.. ( 1981;). Sequence analysis of the DNA encoding the EcoRI endonuclease and methylase. J Biol Chem256:2143–2153[PubMed]
    [Google Scholar]
  55. Hägg P., de Pohl J. W., Abdulkarim F., Isaksson L. A.. ( 2004;). A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli . J Biotechnol111:17–30 [CrossRef][PubMed]
    [Google Scholar]
  56. Hall C., Brachat S., Dietrich F. S.. ( 2005;). Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae . Eukaryot Cell4:1102–1115 [CrossRef][PubMed]
    [Google Scholar]
  57. Halvorsen E. M., Williams J. J., Bhimani A. J., Billings E. A., Hergenrother P. J.. ( 2011;). Txe, an endoribonuclease of the enterococcal Axe–Txe toxin–antitoxin system, cleaves mRNA and inhibits protein synthesis. Microbiology157:387–397 [CrossRef][PubMed]
    [Google Scholar]
  58. Hammami R., Zouhir A., Le Lay C., Ben Hamida J., Fliss I.. ( 2010;). BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol10:22 [CrossRef][PubMed]
    [Google Scholar]
  59. Hayes F., Van Melderen L.. ( 2011;). Toxins–antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol46:386–408 [CrossRef][PubMed]
    [Google Scholar]
  60. Heath R. J., Yu Y. T., Shapiro M. A., Olson E., Rock C. O.. ( 1998;). Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J Biol Chem273:30316–30320 [CrossRef][PubMed]
    [Google Scholar]
  61. Herdewijn P., Marlière P.. ( 2009;). Toward safe genetically modified organisms through the chemical diversification of nucleic acids. Chem Biodivers6:791–808 [CrossRef][PubMed]
    [Google Scholar]
  62. Hiraga S., Sugiyama T., Itoh T.. ( 1994;). Comparative analysis of the replicon regions of eleven ColE2-related plasmids. J Bacteriol176:7233–7243[PubMed]
    [Google Scholar]
  63. Hoesl M. G., Budisa N.. ( 2012;). Recent advances in genetic code engineering in Escherichia coli . Curr Opin Biotechnol23:751–757 [CrossRef][PubMed]
    [Google Scholar]
  64. Hoffman, E., Hanson, J. & Thomas, J. (2012).http://www.foe.org/projects/food-and-technology/synthetic-biology
  65. Imamura N., Nakayama H.. ( 1982;). thiK and thiL loci of Escherichia coli . J Bacteriol151:708–717[PubMed]
    [Google Scholar]
  66. Isaacs F. J., Carr P. A., Wang H. H., Lajoie M. J., Sterling B., Kraal L., Tolonen A. C., Gianoulis T. A., Goodman D. B. et al. ( 2011;). Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science333:348–353 [CrossRef][PubMed]
    [Google Scholar]
  67. Jiang Y., Pogliano J., Helinski D. R., Konieczny I.. ( 2002;). ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol Microbiol44:971–979 [CrossRef][PubMed]
    [Google Scholar]
  68. Kamphuis M. B., Monti M. C., van den Heuvel R. H., López-Villarejo J., Díaz-Orejas R., Boelens R.. ( 2007;). Structure and function of bacterial kid–kis and related toxin–antitoxin systems. Protein Pept Lett14:113–124 [CrossRef][PubMed]
    [Google Scholar]
  69. Khalil A. S., Collins J. J.. ( 2010;). Synthetic biology: applications come of age. Nat Rev Genet11:367–379 [CrossRef][PubMed]
    [Google Scholar]
  70. Kittle J. D., Simons R. W., Lee J., Kleckner N.. ( 1989;). Insertion sequence IS10 anti-sense pairing initiates by an interaction between the 5′ end of the target RNA and a loop in the anti-sense RNA. J Mol Biol210:561–572 [CrossRef][PubMed]
    [Google Scholar]
  71. Kittleson J. T., Cheung S., Anderson J. C.. ( 2011;). Rapid optimization of gene dosage in E. coli using DIAL strains. J Biol Eng5:10 [CrossRef][PubMed]
    [Google Scholar]
  72. Kleina L. G., Masson J. M., Normanly J., Abelson J., Miller J. H.. ( 1990;). Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. J Mol Biol213:705–717 [CrossRef][PubMed]
    [Google Scholar]
  73. Knudsen S. M., Karlström O. H.. ( 1991;). Development of efficient suicide mechanisms for biological containment of bacteria. Appl Environ Microbiol57:85–92[PubMed]
    [Google Scholar]
  74. Knudsen S., Saadbye P., Hansen L. H., Collier A., Jacobsen B. L., Schlundt J., Karlström O. H.. ( 1995;). Development and testing of improved suicide functions for biological containment of bacteria. Appl Environ Microbiol61:985–991[PubMed]
    [Google Scholar]
  75. Kwok R.. ( 2012;). Chemical biology: DNA’s new alphabet. Nature491:516–518 [CrossRef][PubMed]
    [Google Scholar]
  76. Leconte A. M., Hwang G. T., Matsuda S., Capek P., Hari Y., Romesberg F. E.. ( 2008;). Discovery, characterization, and optimization of an unnatural base pair for expansion of the genetic alphabet. J Am Chem Soc130:2336–2343 [CrossRef][PubMed]
    [Google Scholar]
  77. Lewis K.. ( 2010;). Persister cells. Annu Rev Microbiol64:357–372 [CrossRef][PubMed]
    [Google Scholar]
  78. Liss M., Daubert D., Brunner K., Kliche K., Hammes U., Leiherer A., Wagner R.. ( 2012;). Embedding permanent watermarks in synthetic genes. PLoS ONE7:e42465 [CrossRef][PubMed]
    [Google Scholar]
  79. Liu C. C., Schultz P. G.. ( 2010;). Adding new chemistries to the genetic code. Annu Rev Biochem79:413–444 [CrossRef][PubMed]
    [Google Scholar]
  80. Liu M., Zhang Y., Inouye M., Woychik N. A.. ( 2008;). Bacterial addiction module toxin Doc inhibits translation elongation through its association with the 30S ribosomal subunit. Proc Natl Acad Sci U S A105:5885–5890 [CrossRef][PubMed]
    [Google Scholar]
  81. Lorenz M. G., Wackernagel W.. ( 1994;). Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev58:563–602[PubMed]
    [Google Scholar]
  82. Mairhofer J., Pfaffenzeller I., Merz D., Grabherr R.. ( 2008;). A novel antibiotic free plasmid selection system: advances in safe and efficient DNA therapy. Biotechnol J3:83–89 [CrossRef][PubMed]
    [Google Scholar]
  83. Marlière P.. ( 2009;). The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. Syst Synth Biol3:77–84 [CrossRef][PubMed]
    [Google Scholar]
  84. Marlière P., Patrouix J., Döring V., Herdewijn P., Tricot S., Cruveiller S., Bouzon M., Mutzel R.. ( 2011;). Chemical evolution of a bacterium’s genome. Angew Chem Int Ed Engl50:7109–7114 [CrossRef][PubMed]
    [Google Scholar]
  85. Martin V. J. J., Pitera D. J., Withers S. T., Newman J. D., Keasling J. D.. ( 2003;). Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol21:796–802 [CrossRef][PubMed]
    [Google Scholar]
  86. Martincorena I., Seshasayee A. S. N., Luscombe N. M.. ( 2012;). Evidence of non-random mutation rates suggests an evolutionary risk management strategy. Nature485:95–98 [CrossRef][PubMed]
    [Google Scholar]
  87. McMurry L. M., Oethinger M., Levy S. B.. ( 1998;). Triclosan targets lipid synthesis. Nature394:531–532 [CrossRef][PubMed]
    [Google Scholar]
  88. Metcalf W. W., Jiang W., Wanner B. L.. ( 1994;). Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kγ origin plasmids at different copy numbers. Gene138:1–7 [CrossRef][PubMed]
    [Google Scholar]
  89. Moe-Behrens G. H. G., Davis R., Haynes K. A.. ( 2013;). Preparing synthetic biology for the world. Front Microbiol4:5 [CrossRef][PubMed]
    [Google Scholar]
  90. Molin S., Boe L., Jensen L. B., Kristensen C. S., Givskov M., Ramos J. L., Bej A. K.. ( 1993;). Suicidal genetic elements and their use in biological containment of bacteria. Annu Rev Microbiol47:139–166 [CrossRef][PubMed]
    [Google Scholar]
  91. Mulvey M. R., Simor A. E.. ( 2009;). Antimicrobial resistance in hospitals: how concerned should we be?. Can Med Assoc J180:408–415[PubMed][CrossRef]
    [Google Scholar]
  92. Mutalik V. K., Qi L., Guimaraes J. C., Lucks J. B., Arkin A. P.. ( 2012;). Rationally designed families of orthogonal RNA regulators of translation. Nat Chem Biol8:447–454 [CrossRef][PubMed]
    [Google Scholar]
  93. Mutschler H., Meinhart A.. ( 2011;). ϵ/ζ systems: their role in resistance, virulence, and their potential for antibiotic development. J Mol Med (Berl)89:1183–1194 [CrossRef][PubMed]
    [Google Scholar]
  94. Nassif N., Bouvet O., Noelle Rager M., Roux C., Coradin T., Livage J.. ( 2002;). Living bacteria in silica gels. Nat Mater1:42–44 [CrossRef][PubMed]
    [Google Scholar]
  95. Neubauer C., Gao Y.-G., Andersen K. R., Dunham C. M., Kelley A. C., Hentschel J., Gerdes K., Ramakrishnan V., Brodersen D. E.. ( 2009;). The structural basis for mRNA recognition and cleavage by the ribosome-dependent endonuclease RelE. Cell139:1084–1095 [CrossRef][PubMed]
    [Google Scholar]
  96. Neumann H., Wang K., Davis L., Garcia-Alai M., Chin J. W.. ( 2010;). Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature464:441–444 [CrossRef][PubMed]
    [Google Scholar]
  97. Nielsen K. M., Townsend J. P.. ( 2004;). Monitoring and modeling horizontal gene transfer. Nat Biotechnol22:1110–1114 [CrossRef][PubMed]
    [Google Scholar]
  98. Nielsen K. M., Johnsen P. J., Bensasson D., Daffonchio D.. ( 2007;). Release and persistence of extracellular DNA in the environment. Environ Biosafety Res6:37–53 [CrossRef][PubMed]
    [Google Scholar]
  99. Papi R. M., Chaitidou S. A., Trikka F. A., Kyriakidis D. A.. ( 2005;). Encapsulated Escherichia coli in alginate beads capable of secreting a heterologous pectin lyase. Microb Cell Fact4:35 [CrossRef][PubMed]
    [Google Scholar]
  100. Pasotti L., Zucca S., Lupotto M., Cusella De Angelis M., Magni P.. ( 2011;). Characterization of a synthetic bacterial self-destruction device for programmed cell death and for recombinant proteins release. J Biol Eng58 [CrossRef]
    [Google Scholar]
  101. Paul D., Pandey G., Jain R. K.. ( 2005;). Suicidal genetically engineered microorganisms for bioremediation: need and perspectives. Bioessays27:563–573 [CrossRef][PubMed]
    [Google Scholar]
  102. Pecota D. C., Kim C. S., Wu K., Gerdes K., Wood T. K.. ( 1997;). Combining the hok/sok, parDE, and pnd postsegregational killer loci to enhance plasmid stability. Appl Environ Microbiol63:1917–1924[PubMed]
    [Google Scholar]
  103. Pedersen K., Christensen S. K., Gerdes K.. ( 2002;). Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol Microbiol45:501–510 [CrossRef][PubMed]
    [Google Scholar]
  104. Pedersen K., Zavialov A. V., Pavlov M. Y., Elf J., Gerdes K., Ehrenberg M.. ( 2003;). The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell112:131–140 [CrossRef][PubMed]
    [Google Scholar]
  105. Peubez I., Chaudet N., Mignon C., Hild G., Husson S., Courtois V., De Luca K., Speck D., Sodoyer R.. ( 2010;). Antibiotic-free selection in E. coli: new considerations for optimal design and improved production. Microb Cell Fact9:65 [CrossRef][PubMed]
    [Google Scholar]
  106. Pfaffenzeller I., Striedner G., Bayer K., Grabherr R.. ( 2006a;). ColE1 derived RNA I as a key molecule in a novel antibiotic free plasmid addiction system. Microb Cell Fact5:Suppl. 1P87 [CrossRef]
    [Google Scholar]
  107. Pfaffenzeller I., Mairhofer J., Striedner G., Bayer K., Grabherr R.. ( 2006b;). Using ColE1-derived RNA I for suppression of a bacterially encoded gene: implication for a novel plasmid addiction system. Biotechnol J1:675–681 [CrossRef][PubMed]
    [Google Scholar]
  108. Pinheiro V. B., Taylor A. I., Cozens C., Abramov M., Renders M., Zhang S., Chaput J. C., Wengel J., Peak-Chew S. Y. et al. ( 2012;). Synthetic genetic polymers capable of heredity and evolution. Science336:341–344 [CrossRef][PubMed]
    [Google Scholar]
  109. Presidential Commission for the Study of Bioethical Issues (2010).http://bioethics.gov/cms/studies
  110. Pruden A., Arabi M., Storteboom H. N.. ( 2012;). Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol46:11541–11549 [CrossRef][PubMed]
    [Google Scholar]
  111. Riley M. A., Wertz J. E.. ( 2002;). Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol56:117–137 [CrossRef][PubMed]
    [Google Scholar]
  112. Roberts R. J.. ( 2005;). How restriction enzymes became the workhorses of molecular biology. Proc Natl Acad Sci U S A102:5905–5908 [CrossRef][PubMed]
    [Google Scholar]
  113. Roberts R. J., Belfort M., Bestor T., Bhagwat A. S., Bickle T. A., Bitinaite J., Blumenthal R. M., Degtyarev S. Kh., Dryden D. T. F. et al. ( 2003;). A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res31:1805–1812 [CrossRef][PubMed]
    [Google Scholar]
  114. Roberts R. J., Vincze T., Posfai J., Macelis D.. ( 2007;). REBASE–enzymes and genes for DNA restriction and modification. Nucleic Acids Res35:Database issueD269–D270 [CrossRef][PubMed]
    [Google Scholar]
  115. Ronchel M. C., Ramos J. L.. ( 2001;). Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol67:2649–2656 [CrossRef][PubMed]
    [Google Scholar]
  116. Sayler G. S., Ripp S.. ( 2000;). Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol11:286–289 [CrossRef][PubMed]
    [Google Scholar]
  117. Scherzinger E., Haring V., Lurz R., Otto S.. ( 1991;). Plasmid RSF1010 DNA replication in vitro promoted by purified RSF1010 RepA, RepB and RepC proteins. Nucleic Acids Res19:1203–1211 [CrossRef][PubMed]
    [Google Scholar]
  118. Schmidt M.. ( 2010;). Xenobiology: a new form of life as the ultimate biosafety tool. Bioessays32:322–331 [CrossRef][PubMed]
    [Google Scholar]
  119. Schmidt M., de Lorenzo V.. ( 2012;). Synthetic constructs in/for the environment: managing the interplay between natural and engineered biology. FEBS Lett586:2199–2206 [CrossRef][PubMed]
    [Google Scholar]
  120. Schweder T., Schmidt I., Herrmann H., Neubauer P., Hecker M., Hofmann K.. ( 1992;). An expression vector system providing plasmid stability and conditional suicide of plasmid-containing cells. Appl Microbiol Biotechnol38:91–93 [CrossRef][PubMed]
    [Google Scholar]
  121. Schweder T., Hofmann K., Hecker M.. ( 1995;). Escherichia coli K12 relA strains as safe hosts for expression of recombinant DNA. Appl Microbiol Biotechnol42:718–723 [CrossRef][PubMed]
    [Google Scholar]
  122. Shao Y., Harrison E. M., Bi D., Tai C., He X., Ou H.-Y., Rajakumar K., Deng Z.. ( 2011;). TADB: a web-based resource for Type 2 toxin–antitoxin loci in bacteria and archaea. Nucleic Acids Res39:Database issueD606–D611 [CrossRef][PubMed]
    [Google Scholar]
  123. Silva-Rocha R., Martínez-García E., Calles B., Chavarría M., Arce-Rodríguez A., de Las Heras A., Páez-Espino A. D., Durante-Rodríguez G., Kim J. et al. ( 2013;). The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res41:Database issueD666–D675 [CrossRef][PubMed]
    [Google Scholar]
  124. Singh J. S., Abhilash P. C., Singh H. B., Singh R. P., Singh D. P.. ( 2011;). Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene480:1–9 [CrossRef][PubMed]
    [Google Scholar]
  125. Sleight S. C., Bartley B. A., Lieviant J. A., Sauro H. M.. ( 2010;). Designing and engineering evolutionary robust genetic circuits. J Biol Eng4:12 [CrossRef][PubMed]
    [Google Scholar]
  126. Soelaiman S., Jakes K., Wu N., Li C., Shoham M.. ( 2001;). Crystal structure of colicin E3: implications for cell entry and ribosome inactivation. Mol Cell8:1053–1062 [CrossRef][PubMed]
    [Google Scholar]
  127. Soubrier F., Cameron B., Manse B., Somarriba S., Dubertret C., Jaslin G., Jung G., Caer C. L., Dang D. et al. ( 1999;). pCOR: a new design of plasmid vectors for nonviral gene therapy. Gene Ther6:1482–1488 [CrossRef][PubMed]
    [Google Scholar]
  128. Thomas C. M., Nielsen K. M.. ( 2005;). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol3:711–721 [CrossRef][PubMed]
    [Google Scholar]
  129. Torres B., Jaenecke S., Timmis K. N., García J. L., Díaz E.. ( 2003;). A dual lethal system to enhance containment of recombinant micro-organisms. Microbiology149:3595–3601 [CrossRef][PubMed]
    [Google Scholar]
  130. Townsend J. P., Bøhn T., Nielsen K. M.. ( 2012;). Assessing the probability of detection of horizontal gene transfer events in bacterial populations. Front Microbiol3:27 [CrossRef][PubMed]
    [Google Scholar]
  131. Vidal L., Pinsach J., Striedner G., Caminal G., Ferrer P.. ( 2008;). Development of an antibiotic-free plasmid selection system based on glycine auxotrophy for recombinant protein overproduction in Escherichia coli . J Biotechnol134:127–136 [CrossRef][PubMed]
    [Google Scholar]
  132. Wang L., Brock A., Herberich B., Schultz P. G.. ( 2001;). Expanding the genetic code of Escherichia coli . Science292:498–500 [CrossRef][PubMed]
    [Google Scholar]
  133. Wang H. H., Isaacs F. J., Carr P. A., Sun Z. Z., Xu G., Forest C. R., Church G. M.. ( 2009;). Programming cells by multiplex genome engineering and accelerated evolution. Nature460:894–898 [CrossRef][PubMed]
    [Google Scholar]
  134. Weaver K. E.. ( 2012;). The par toxin–antitoxin system from Enterococcus faecalis plasmid pAD1 and its chromosomal homologs. RNA Biol9:1498–1503 [CrossRef][PubMed]
    [Google Scholar]
  135. White R., Chiba S., Pang T., Dewey J. S., Savva C. G., Holzenburg A., Pogliano K., Young R.. ( 2011;). Holin triggering in real time. Proc Natl Acad Sci U S A108:798–803 [CrossRef][PubMed]
    [Google Scholar]
  136. Williams R. J.. ( 2003;). Restriction endonucleases: classification, properties, and applications. Mol Biotechnol23:225–243 [CrossRef][PubMed]
    [Google Scholar]
  137. Williams S. G., Cranenburgh R. M., Weiss A. M. E., Wrighton C. J., Sherratt D. J., Hanak J. A.. ( 1998;). Repressor titration: a novel system for selection and stable maintenance of recombinant plasmids. Nucleic Acids Res26:2120–2124 [CrossRef][PubMed]
    [Google Scholar]
  138. Wong Q. N. Y., Ng V. C. W., Lin M. C. M., Kung H.-F., Chan D., Huang J.-D.. ( 2005;). Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli . Nucleic Acids Res33:e59 [CrossRef][PubMed]
    [Google Scholar]
  139. Yagura M., Nishio S.-Y., Kurozumi H., Wang C.-F., Itoh T.. ( 2006;). Anatomy of the replication origin of plasmid ColE2-P9. J Bacteriol188:999–1010 [CrossRef][PubMed]
    [Google Scholar]
  140. Yamaguchi Y., Park J.-H., Inouye M.. ( 2011;). Toxin–antitoxin systems in bacteria and archaea. Annu Rev Genet45:61–79 [CrossRef][PubMed]
    [Google Scholar]
  141. Yamamoto N., Nakahigashi K., Nakamichi T., Yoshino M., Takai Y., Touda Y., Furubayashi A., Kinjyo S., Dose H. et al. ( 2009;). Update on the Keio collection of Escherichia coli single-gene deletion mutants. Mol Syst Biol5:335 [CrossRef][PubMed]
    [Google Scholar]
  142. Yang Z., Chen F., Alvarado J. B., Benner S. A.. ( 2011;). Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J Am Chem Soc133:15105–15112 [CrossRef][PubMed]
    [Google Scholar]
  143. Young I., Wang I., Roof W. D.. ( 2000;). Phages will out: strategies of host cell lysis. Trends Microbiol8:120–128 [CrossRef][PubMed]
    [Google Scholar]
  144. Zielenkiewicz U., Ceglowski P.. ( 2005;). The toxin–antitoxin system of the streptococcal plasmid pSM19035. J Bacteriol187:6094–6105 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066308-0
Loading
/content/journal/micro/10.1099/mic.0.066308-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error