1887

Abstract

Bacteria of the genus contain the largest family of LPXTG surface proteins covalently anchored to the peptidoglycan. The extent to which these proteins may function or be regulated cooperatively is at present unknown. Because of their unique cellular location, we reasoned that distinct LPXTG proteins could act as elements contributing to cell wall homeostasis or influencing the stability of other surface proteins bound to peptidoglycan. To test this hypothesis, we used proteomics to analyse mutants of the intracellular pathogen lacking distinct LPXTG proteins implicated in pathogen–host interactions, such as InlA, InlF, InlG, InlH, InlJ, LapB and Vip. Changes in the cell wall proteome were found in and mutants, which exhibited reduced levels of the LPXTG proteins InlH, Lmo0610, Lmo0880 and Lmo2085, all regulated by the stress-related sigma factor SigB. The ultimate basis of this alteration was uncovered by genome sequencing, which revealed that these and mutants carried loss-of-function mutations in the and genes encoding regulatory proteins that control SigB activity. Attempts to recapitulate this negative selection of SigB in a large series of new or mutants constructed for this purpose were, however, unsuccessful. These results indicate that inadvertent secondary mutations affecting SigB functionality can randomly arise in when using common genetic procedures or during subculturing. Testing of SigB activity could be therefore valuable when manipulating genetically prior to any subsequent phenotypic analysis. This test may be even more justified when generating deletions affecting cell envelope components.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067744-0
2013-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1328.html?itemId=/content/journal/micro/10.1099/mic.0.067744-0&mimeType=html&fmt=ahah

References

  1. Abram F., Starr E., Karatzas K. A., Matlawska-Wasowska K., Boyd A., Wiedmann M., Boor K. J., Connally D., O’Byrne C. P.. ( 2008a;). Identification of components of the sigma B regulon in Listeria monocytogenes that contribute to acid and salt tolerance. . Appl Environ Microbiol 74:, 6848–6858. [CrossRef][PubMed]
    [Google Scholar]
  2. Abram F., Su W. L., Wiedmann M., Boor K. J., Coote P., Botting C., Karatzas K. A., O’Byrne C. P.. ( 2008b;). Proteomic analyses of a Listeria monocytogenes mutant lacking sigmaB identify new components of the sigmaB regulon and highlight a role for sigmaB in the utilization of glycerol. . Appl Environ Microbiol 74:, 594–604. [CrossRef][PubMed]
    [Google Scholar]
  3. Arnaud M., Chastanet A., Débarbouillé M.. ( 2004;). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. . Appl Environ Microbiol 70:, 6887–6891. [CrossRef][PubMed]
    [Google Scholar]
  4. Asakura H., Kawamoto K., Okada Y., Kasuga F., Makino S., Yamamoto S., Igimi S.. ( 2012;). Intrahost passage alters SigB-dependent acid resistance and host cell-associated kinetics of Listeria monocytogenes.. Infect Genet Evol 12:, 94–101. [CrossRef][PubMed]
    [Google Scholar]
  5. Atilano M. L., Pereira P. M., Yates J., Reed P., Veiga H., Pinho M. G., Filipe S. R.. ( 2010;). Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus.. Proc Natl Acad Sci U S A 107:, 18991–18996. [CrossRef][PubMed]
    [Google Scholar]
  6. Begley M., Sleator R. D., Gahan C. G., Hill C.. ( 2005;). Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes.. Infect Immun 73:, 894–904. [CrossRef][PubMed]
    [Google Scholar]
  7. Bierne H., Cossart P.. ( 2007;). Listeria monocytogenes surface proteins: from genome predictions to function. . Microbiol Mol Biol Rev 71:, 377–397. [CrossRef][PubMed]
    [Google Scholar]
  8. Boneca I. G., Dussurget O., Cabanes D., Nahori M. A., Sousa S., Lecuit M., Psylinakis E., Bouriotis V., Hugot J. P. et al. ( 2007;). A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. . Proc Natl Acad Sci U S A 104:, 997–1002. [CrossRef][PubMed]
    [Google Scholar]
  9. Bruno J. C. Jr, Freitag N. E.. ( 2011;). Listeria monocytogenes adapts to long-term stationary phase survival without compromising bacterial virulence. . FEMS Microbiol Lett 323:, 171–179. [CrossRef][PubMed]
    [Google Scholar]
  10. Cabanes D., Dussurget O., Dehoux P., Cossart P.. ( 2004;). Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. . Mol Microbiol 51:, 1601–1614. [CrossRef][PubMed]
    [Google Scholar]
  11. Cabanes D., Sousa S., Cebriá A., Lecuit M., García-del Portillo F., Cossart P.. ( 2005;). Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. . EMBO J 24:, 2827–2838. [CrossRef][PubMed]
    [Google Scholar]
  12. Calvo E., Pucciarelli M. G., Bierne H., Cossart P., Albar J. P., García-Del Portillo F.. ( 2005;). Analysis of the Listeria cell wall proteome by two-dimensional nanoliquid chromatography coupled to mass spectrometry. . Proteomics 5:, 433–443. [CrossRef][PubMed]
    [Google Scholar]
  13. Chakraborty T., Leimeister-Wächter M., Domann E., Hartl M., Goebel W., Nichterlein T., Notermans S.. ( 1992;). Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. . J Bacteriol 174:, 568–574.[PubMed]
    [Google Scholar]
  14. Chaturongakul S., Boor K. J.. ( 2006;). SigmaB activation under environmental and energy stress conditions in Listeria monocytogenes.. Appl Environ Microbiol 72:, 5197–5203. [CrossRef][PubMed]
    [Google Scholar]
  15. Cheung A. L., Bayer A. S., Zhang G., Gresham H., Xiong Y. Q.. ( 2004;). Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus.. FEMS Immunol Med Microbiol 40:, 1–9. [CrossRef][PubMed]
    [Google Scholar]
  16. Cossart P., Toledo-Arana A.. ( 2008;). Listeria monocytogenes, a unique model in infection biology: an overview. . Microbes Infect 10:, 1041–1050. [CrossRef][PubMed]
    [Google Scholar]
  17. den Bakker H. C., Didelot X., Fortes E. D., Nightingale K. K., Wiedmann M.. ( 2008;). Lineage specific recombination rates and microevolution in Listeria monocytogenes.. BMC Evol Biol 8:, 277. [CrossRef][PubMed]
    [Google Scholar]
  18. Doumith M., Cazalet C., Simoes N., Frangeul L., Jacquet C., Kunst F., Martin P., Cossart P., Glaser P., Buchrieser C.. ( 2004;). New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. . Infect Immun 72:, 1072–1083. [CrossRef][PubMed]
    [Google Scholar]
  19. Dramsi S., Biswas I., Maguin E., Braun L., Mastroeni P., Cossart P.. ( 1995;). Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. . Mol Microbiol 16:, 251–261. [CrossRef][PubMed]
    [Google Scholar]
  20. Dussurget O., Cabanes D., Dehoux P., Lecuit M., Buchrieser C., Glaser P., Cossart P..European Listeria Genome Consortium ( 2002;). Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. . Mol Microbiol 45:, 1095–1106. [CrossRef][PubMed]
    [Google Scholar]
  21. Farewell A., Kvint K., Nyström T.. ( 1998;). Negative regulation by RpoS: a case of sigma factor competition. . Mol Microbiol 29:, 1039–1051. [CrossRef][PubMed]
    [Google Scholar]
  22. Ferenci T.. ( 2008;). The spread of a beneficial mutation in experimental bacterial populations: the influence of the environment and genotype on the fixation of rpoS mutations. . Heredity (Edinb) 100:, 446–452. [CrossRef][PubMed]
    [Google Scholar]
  23. García-del Portillo F., Calvo E., D’Orazio V., Pucciarelli M. G.. ( 2011;). Association of ActA to peptidoglycan revealed by cell wall proteomics of intracellular Listeria monocytogenes.. J Biol Chem 286:, 34675–34689. [CrossRef][PubMed]
    [Google Scholar]
  24. Giotis E. S., Julotok M., Wilkinson B. J., Blair I. S., McDowell D. A.. ( 2008;). Role of sigma B factor in the alkaline tolerance response of Listeria monocytogenes 10403S and cross-protection against subsequent ethanol and osmotic stress. . J Food Prot 71:, 1481–1485.[PubMed]
    [Google Scholar]
  25. Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P. et al. ( 2001;). Comparative genomics of Listeria species. . Science 294:, 849–852.[PubMed]
    [Google Scholar]
  26. Guzman C. A., Rohde M., Chakraborty T., Domann E., Hudel M., Wehland J., Timmis K. N.. ( 1995;). Interaction of Listeria monocytogenes with mouse dendritic cells. . Infect Immun 63:, 3665–3673.[PubMed]
    [Google Scholar]
  27. Hain T., Chatterjee S. S., Ghai R., Kuenne C. T., Billion A., Steinweg C., Domann E., Kärst U., Jänsch L. et al. ( 2007;). Pathogenomics of Listeria spp. . Int J Med Microbiol 297:, 541–557. [CrossRef][PubMed]
    [Google Scholar]
  28. Hain T., Hossain H., Chatterjee S. S., Machata S., Volk U., Wagner S., Brors B., Haas S., Kuenne C. T. et al. ( 2008;). Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigmaB regulon. . BMC Microbiol 8:, 20. [CrossRef][PubMed]
    [Google Scholar]
  29. Hamon M., Bierne H., Cossart P.. ( 2006;). Listeria monocytogenes: a multifaceted model. . Nat Rev Microbiol 4:, 423–434. [CrossRef][PubMed]
    [Google Scholar]
  30. Hanson B. R., Neely M. N.. ( 2012;). Coordinate regulation of Gram-positive cell surface components. . Curr Opin Microbiol 15:, 204–210. [CrossRef][PubMed]
    [Google Scholar]
  31. Hecker M., Pané-Farré J., Völker U.. ( 2007;). SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. . Annu Rev Microbiol 61:, 215–236. [CrossRef][PubMed]
    [Google Scholar]
  32. Karlsson-Kanth A., Tegmark-Wisell K., Arvidson S., Oscarsson J.. ( 2006;). Natural human isolates of Staphylococcus aureus selected for high production of proteases and alpha-hemolysin are sigmaB deficient. . Int J Med Microbiol 296:, 229–236. [CrossRef][PubMed]
    [Google Scholar]
  33. Kazmierczak M. J., Wiedmann M., Boor K. J.. ( 2006;). Contributions of Listeria monocytogenes sigmaB and PrfA to expression of virulence and stress response genes during extra- and intracellular growth. . Microbiology 152:, 1827–1838. [CrossRef][PubMed]
    [Google Scholar]
  34. King T., Seeto S., Ferenci T.. ( 2006;). Genotype-by-environment interactions influencing the emergence of rpoS mutations in Escherichia coli populations. . Genetics 172:, 2071–2079. [CrossRef][PubMed]
    [Google Scholar]
  35. Kirchner M., Higgins D. E.. ( 2008;). Inhibition of ROCK activity allows InlF-mediated invasion and increased virulence of Listeria monocytogenes.. Mol Microbiol 68:, 749–767. [CrossRef][PubMed]
    [Google Scholar]
  36. Larsen M. H., Leisner J. J., Ingmer H.. ( 2010;). The chitinolytic activity of Listeria monocytogenes EGD is regulated by carbohydrates but also by the virulence regulator PrfA. . Appl Environ Microbiol 76:, 6470–6476. [CrossRef][PubMed]
    [Google Scholar]
  37. Lingnau A., Domann E., Hudel M., Bock M., Nichterlein T., Wehland J., Chakraborty T.. ( 1995;). Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and -independent mechanisms. . Infect Immun 63:, 3896–3903.[PubMed]
    [Google Scholar]
  38. Loh E., Gripenland J., Johansson J.. ( 2006;). Control of Listeria monocytogenes virulence by 5′-untranslated RNA. . Trends Microbiol 14:, 294–298. [CrossRef][PubMed]
    [Google Scholar]
  39. Mariscotti J. F., Quereda J. J., Pucciarelli M. G.. ( 2012;). Contribution of sortase A to the regulation of Listeria monocytogenes LPXTG surface proteins. . Int Microbiol 15:, 43–51.[PubMed]
    [Google Scholar]
  40. Marraffini L. A., Dedent A. C., Schneewind O.. ( 2006;). Sortases and the art of anchoring proteins to the envelopes of gram-positive bacteria. . Microbiol Mol Biol Rev 70:, 192–221. [CrossRef][PubMed]
    [Google Scholar]
  41. McAdam P. R., Holmes A., Templeton K. E., Fitzgerald J. R.. ( 2011;). Adaptive evolution of Staphylococcus aureus during chronic endobronchial infection of a cystic fibrosis patient. . PLoS ONE 6:, e24301. [CrossRef][PubMed]
    [Google Scholar]
  42. Mengaud J., Lecuit M., Lebrun M., Nato F., Mazie J. C., Cossart P.. ( 1996;). Antibodies to the leucine-rich repeat region of internalin block entry of Listeria monocytogenes into cells expressing E-cadherin. . Infect Immun 64:, 5430–5433.[PubMed]
    [Google Scholar]
  43. Novick R. P.. ( 2003;). Autoinduction and signal transduction in the regulation of staphylococcal virulence. . Mol Microbiol 48:, 1429–1449. [CrossRef][PubMed]
    [Google Scholar]
  44. O’Byrne C. P., Karatzas K. A.. ( 2008;). The role of sigma B (sigma B) in the stress adaptations of Listeria monocytogenes: overlaps between stress adaptation and virulence. . Adv Appl Microbiol 65:, 115–140. [CrossRef][PubMed]
    [Google Scholar]
  45. Orsi R. H., den Bakker H. C., Wiedmann M.. ( 2011;). Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. . Int J Med Microbiol 301:, 79–96. [CrossRef][PubMed]
    [Google Scholar]
  46. Palmer M. E., Wiedmann M., Boor K. J.. ( 2009;). Sigma(B) and sigma(L) contribute to Listeria monocytogenes 10403S response to the antimicrobial peptides SdpC and nisin. . Foodborne Pathog Dis 6:, 1057–1065. [CrossRef][PubMed]
    [Google Scholar]
  47. Personnic N., Bruck S., Nahori M. A., Toledo-Arana A., Nikitas G., Lecuit M., Dussurget O., Cossart P., Bierne H.. ( 2010;). The stress-induced virulence protein InlH controls interleukin-6 production during murine listeriosis. . Infect Immun 78:, 1979–1989. [CrossRef][PubMed]
    [Google Scholar]
  48. Price C. W. (2010). General stress response in Bacillus subtilis and related Gram-positive bacteria, p. 301�–318. In Storz G., Hengge R. (ed.), Bacterial stress responses, 2nd ed. ASM Press, Washington, DC. [CrossRef]
  49. Pucciarelli M. G., Calvo E., Sabet C., Bierne H., Cossart P., García-del Portillo F.. ( 2005;). Identification of substrates of the Listeria monocytogenes sortases A and B by a non-gel proteomic analysis. . Proteomics 5:, 4808–4817. [CrossRef][PubMed]
    [Google Scholar]
  50. Raengpradub S., Wiedmann M., Boor K. J.. ( 2008;). Comparative analysis of the sigma B-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. . Appl Environ Microbiol 74:, 158–171. [CrossRef][PubMed]
    [Google Scholar]
  51. Raffelsbauer D., Bubert A., Engelbrecht F., Scheinpflug J., Simm A., Hess J., Kaufmann S. H., Goebel W.. ( 1998;). The gene cluster inlC2DE of Listeria monocytogenes contains additional new internalin genes and is important for virulence in mice. . Mol Gen Genet 260:, 144–158. [CrossRef][PubMed]
    [Google Scholar]
  52. Reis O., Sousa S., Camejo A., Villiers V., Gouin E., Cossart P., Cabanes D.. ( 2010;). LapB, a novel Listeria monocytogenes LPXTG surface adhesin, required for entry into eukaryotic cells and virulence. . J Infect Dis 202:, 551–562. [CrossRef][PubMed]
    [Google Scholar]
  53. Sabet C., Lecuit M., Cabanes D., Cossart P., Bierne H.. ( 2005;). LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence. . Infect Immun 73:, 6912–6922. [CrossRef][PubMed]
    [Google Scholar]
  54. Schlag M., Biswas R., Krismer B., Kohler T., Zoll S., Yu W., Schwarz H., Peschel A., Götz F.. ( 2010;). Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. . Mol Microbiol 75:, 864–873. [CrossRef][PubMed]
    [Google Scholar]
  55. Spirig T., Weiner E. M., Clubb R. T.. ( 2011;). Sortase enzymes in Gram-positive bacteria. . Mol Microbiol 82:, 1044–1059. [CrossRef][PubMed]
    [Google Scholar]
  56. Swaminathan B., Gerner-Smidt P.. ( 2007;). The epidemiology of human listeriosis. . Microbes Infect 9:, 1236–1243. [CrossRef][PubMed]
    [Google Scholar]
  57. Toledo-Arana A., Dussurget O., Nikitas G., Sesto N., Guet-Revillet H., Balestrino D., Loh E., Gripenland J., Tiensuu T. et al. ( 2009;). The Listeria transcriptional landscape from saprophytism to virulence. . Nature 459:, 950–956. [CrossRef][PubMed]
    [Google Scholar]
  58. Vázquez-Boland J. A., Kuhn M., Berche P., Chakraborty T., Domínguez-Bernal G., Goebel W., González-Zorn B., Wehland J., Kreft J.. ( 2001;). Listeria pathogenesis and molecular virulence determinants. . Clin Microbiol Rev 14:, 584–640. [CrossRef][PubMed]
    [Google Scholar]
  59. Wilson, K. (2001). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1.–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: John Wiley & Sons. [CrossRef]
  60. Wouters J. A., Hain T., Darji A., Hüfner E., Wemekamp-Kamphuis H., Chakraborty T., Abee T.. ( 2005;). Identification and characterization of di- and tripeptide transporter DtpT of Listeria monocytogenes EGD-e. . Appl Environ Microbiol 71:, 5771–5778. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067744-0
Loading
/content/journal/micro/10.1099/mic.0.067744-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error