1887

Abstract

is an important cause of haemorrhagic septicaemia in fish and also of gastro- and extra-intestinal infections in humans. We have recently demonstrated that the PhoP-PhoQ two-component regulatory system plays important roles in both virulence and stress tolerance in . In this study, the proteomes of the WT and mutant strains were compared to define components of the PhoP regulon in EIB202. Overall, 18 proteins whose expression levels exhibited a twofold or greater change were identified; 13 of these proteins were found to require the presence of PhoP for full expression, while five were expressed at a higher level in the mutant background. Identified proteins represented diverse functional categories, including energy production, amino acid metabolism and oxidative stress defence. Quantitative real-time PCR analysis of the mRNA levels for the identified proteins confirmed the proteomics data. Interestingly, the β subunit of the FF ATP synthase, playing an important role in growth and virulence of , was listed as one of the proteins whose expression was greatly dependent on PhoP. The FF ATP synthase was encoded in a gene cluster () and the nine genes were transcribed as an operon. PhoP positively regulated the transcription of the nine ATP synthase genes and exerted this effect through direct binding to the promoter of . Overall, the results provide new insights into the PhoP regulon and unravel a novel role for PhoP in the regulation of the FF ATP synthase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066803-0
2013-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1340.html?itemId=/content/journal/micro/10.1099/mic.0.066803-0&mimeType=html&fmt=ahah

References

  1. Abbott S. L., Janda J. M.( 2006). The genus Edwardsiella. .. Proteobacteria: Gamma ClassThe Prokaryotes, 3rd edn.72–89 Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Sackebrandt E. New York: Springer; [View Article]
    [Google Scholar]
  2. Alkhuder K., Meibom K. L., Dubail I., Dupuis M., Charbit A.( 2009). Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis.. PLoS Pathog 5:e1000284 [View Article][PubMed]
    [Google Scholar]
  3. Banbula A., Potempa J., Travis J., Fernandez-Catalén C., Mann K., Huber R., Bode W., Medrano F. J.( 1998). Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 Å resolution. Structure 6:1185–1193 [View Article][PubMed]
    [Google Scholar]
  4. Bjur E., Eriksson-Ygberg S., Aslund F., Rhen M.( 2006). Thioredoxin 1 promotes intracellular replication and virulence of Salmonella enterica serovar Typhimurium. Infect Immun 74:5140–5151 [View Article][PubMed]
    [Google Scholar]
  5. Calloni G., Chen T., Schermann S. M., Chang H. C., Genevaux P., Agostini F., Tartaglia G. G., Hayer-Hartl M., Hartl F. U.( 2012). DnaK functions as a central hub in the E. coli chaperone network. Cell Rep 1:251–264 [View Article][PubMed]
    [Google Scholar]
  6. Carmel-Harel O., Storz G.( 2000). Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461 [View Article][PubMed]
    [Google Scholar]
  7. Chakraborty S., Li M., Chatterjee C., Sivaraman J., Leung K. Y., Mok Y. K.( 2010). Temperature and Mg2+ sensing by a novel PhoP-PhoQ two-component system for regulation of virulence in Edwardsiella tarda.. J Biol Chem 285:38876–38888 [View Article][PubMed]
    [Google Scholar]
  8. Charles R. C., Harris J. B., Chase M. R., Lebrun L. M., Sheikh A., LaRocque R. C., Logvinenko T., Rollins S. M., Tarique A. et al.( 2009). Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium. PLoS ONE 4:e6994 [View Article][PubMed]
    [Google Scholar]
  9. Cordwell S. J.( 2006). Technologies for bacterial surface proteomics. Curr Opin Microbiol 9:320–329 [View Article][PubMed]
    [Google Scholar]
  10. Di Pasqua R., Mamone G., Ferranti P., Ercolini D., Mauriello G.( 2010). Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics 10:1040–1049[PubMed]
    [Google Scholar]
  11. Eisenreich W., Dandekar T., Heesemann J., Goebel W.( 2010). Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol 8:401–412 [View Article][PubMed]
    [Google Scholar]
  12. Faucher S. P., Porwollik S., Dozois C. M., McClelland M., Daigle F.( 2006). Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci U S A 103:1906–1911 [View Article][PubMed]
    [Google Scholar]
  13. Garcia-del Portillo F., Foster J. W., Finlay B. B.( 1993). Role of acid tolerance response genes in Salmonella typhimurium virulence. Infect Immun 61:4489–4492[PubMed]
    [Google Scholar]
  14. Groisman E. A.( 2001). The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183:1835–1842 [View Article][PubMed]
    [Google Scholar]
  15. Hansen A. M., Qiu Y., Yeh N., Blattner F. R., Durfee T., Jin D. J.( 2005). SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli.. Mol Microbiol 56:719–734 [View Article][PubMed]
    [Google Scholar]
  16. Herrero M., de Lorenzo V., Timmis K. N.( 1990). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567[PubMed]
    [Google Scholar]
  17. Hohmann E. L., Oletta C. A., Killeen K. P., Miller S. I.( 1996). phoP/phoQ-deleted Salmonella typhi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers. J Infect Dis 173:1408–1414 [View Article][PubMed]
    [Google Scholar]
  18. Horzempa J., Carlson P. E. Jr, O’Dee D. M., Shanks R. M. Q., Nau G. J.( 2008). Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis. BMC Microbiol 8:172 [View Article][PubMed]
    [Google Scholar]
  19. Jones H. M., Brajkovich C. M., Gunsalus R. P.( 1983). In vivo 5′ terminus and length of the mRNA for the proton-translocating ATPase (unc) operon of Escherichia coli.. J Bacteriol 155:1279–1287[PubMed]
    [Google Scholar]
  20. Kato A., Groisman E. A.Howard Hughes Medical Institute( 2008). The PhoQ/PhoP regulatory network of Salmonella enterica.. Adv Exp Med Biol 631:7–21 [View Article][PubMed]
    [Google Scholar]
  21. Koháryová M., Kolárová M.( 2008). Oxidative stress and thioredoxin system. Gen Physiol Biophys 27:71–84[PubMed]
    [Google Scholar]
  22. Laarman A. J., Ruyken M., Malone C. L., van Strijp J. A. G., Horswill A. R., Rooijakkers S. H. M.( 2011). Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J Immunol 186:6445–6453 [View Article][PubMed]
    [Google Scholar]
  23. Livak K. J., Schmittgen T. D.( 2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT Method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  24. Lv Y., Xiao J., Liu Q., Wu H., Zhang Y., Wang Q.( 2012a). Systematic mutation analysis of two-component signal transduction systems reveals EsrA-EsrB and PhoP-PhoQ as the major virulence regulators in Edwardsiella tarda.. Vet Microbiol 157:190–199 [View Article][PubMed]
    [Google Scholar]
  25. Lv Y., Zheng J., Yang M., Wang Q., Zhang Y.( 2012b). An Edwardsiella tarda mutant lacking UDP-glucose dehydrogenase shows pleiotropic phenotypes, attenuated virulence, and potential as a vaccine candidate. Vet Microbiol 160:506–512 [View Article][PubMed]
    [Google Scholar]
  26. McEntire J. C., Carman G. M., Montville T. J.( 2004). Increased ATPase activity is responsible for acid sensitivity of nisin-resistant Listeria monocytogenes ATCC 700302. Appl Environ Microbiol 70:2717–2721 [View Article][PubMed]
    [Google Scholar]
  27. Mohanty B. R., Sahoo P. K.( 2007). Edwardsiellosis in fish: a brief review. J Biosci 32:S31331–1344 [View Article][PubMed]
    [Google Scholar]
  28. Muñoz-Elías E. J., McKinney J. D.( 2006). Carbon metabolism of intracellular bacteria. Cell Microbiol 8:10–22 [View Article][PubMed]
    [Google Scholar]
  29. Northen H., Paterson G. K., Constantino-Casas F., Bryant C. E., Clare S., Mastroeni P., Peters S. E., Maskell D. J.( 2010). Salmonella enterica serovar Typhimurium mutants completely lacking the F0F1 ATPase are novel live attenuated vaccine strains. Vaccine 28:940–949 [View Article][PubMed]
    [Google Scholar]
  30. Park S. B., Aoki T., Jung T. S.( 2012). Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet Res 43:67 [View Article][PubMed]
    [Google Scholar]
  31. Perez J. C., Shin D., Zwir I., Latifi T., Hadley T. J., Groisman E. A.( 2009). Evolution of a bacterial regulon controlling virulence and Mg2+ homeostasis. PLoS Genet 5:e1000428 [View Article][PubMed]
    [Google Scholar]
  32. Powell J. T., Morrison J. F.( 1978). The purification and properties of the aspartate aminotransferase and aromatic-amino-acid aminotransferase from Escherichia coli.. Eur J Biochem 87:391–400 [View Article][PubMed]
    [Google Scholar]
  33. Pressley M. E., Phelan P. E. III, Witten P. E., Mellon M. T., Kim C. H.( 2005). Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish. Dev Comp Immunol 29:501–513 [View Article][PubMed]
    [Google Scholar]
  34. Reed L. J., Muench H.( 1938). A simple method of estimating fifty percent endpoints. Am J Epidemiol 27:493–497
    [Google Scholar]
  35. Sem X. H., Rhen M.( 2012). Pathogenicity of Salmonella enterica in Caenorhabditis elegans relies on disseminated oxidative stress in the infected host. PLoS ONE 7:e45417 [View Article][PubMed]
    [Google Scholar]
  36. Sieprawska-Lupa M., Mydel P., Krawczyk K., Wójcik K., Puklo M., Lupa B., Suder P., Silberring J., Reed M. et al.( 2004). Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother 48:4673–4679 [View Article][PubMed]
    [Google Scholar]
  37. Srinivasa Rao P. S., Yamada Y., Leung K. Y.( 2003). A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda.. Microbiology 149:2635–2644 [View Article][PubMed]
    [Google Scholar]
  38. Tozzi M. G., Camici M., Mascia L., Sgarrella F., Ipata P. L.( 2006). Pentose phosphates in nucleoside interconversion and catabolism. FEBS J 273:1089–1101 [View Article][PubMed]
    [Google Scholar]
  39. Tran S. L., Cook G. M.( 2005). The F1F0-ATP synthase of Mycobacterium smegmatis is essential for growth. J Bacteriol 187:5023–5028 [View Article][PubMed]
    [Google Scholar]
  40. Turnbull A. L., Surette M. G.( 2010). Cysteine biosynthesis, oxidative stress and antibiotic resistance in Salmonella typhimurium.. Res Microbiol 161:643–650 [View Article][PubMed]
    [Google Scholar]
  41. von Ballmoos C., Wiedenmann A., Dimroth P.( 2009). Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem 78:649–672 [View Article][PubMed]
    [Google Scholar]
  42. Wang Q., Yang M., Xiao J., Wu H., Wang X., Lv Y., Xu L., Zheng H., Wang S. et al.( 2009a). Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS ONE 4:e7646 [View Article][PubMed]
    [Google Scholar]
  43. Wang S., Deng K., Zaremba S., Deng X., Lin C., Wang Q., Tortorello M. L., Zhang W.( 2009b). Transcriptomic response of Escherichia coli O157 : H7 to oxidative stress. Appl Environ Microbiol 75:6110–6123 [View Article][PubMed]
    [Google Scholar]
  44. Xiao J., Wang Q., Liu Q., Wang X., Liu H., Zhang Y.( 2008). Isolation and identification of fish pathogen Edwardsiella tarda from mariculture in China. Aquac Res 40:13–17 [View Article]
    [Google Scholar]
  45. Xiao J., Wang Q., Liu Q., Xu L., Wang X., Wu H., Zhang Y.( 2009). Characterization of Edwardsiella tarda rpoS: effect on serum resistance, chondroitinase activity, biofilm formation, and autoinducer synthetases expression. Appl Microbiol Biotechnol 83:151–160 [View Article][PubMed]
    [Google Scholar]
  46. Yu J. L., Guo L.( 2011). Quantitative proteomic analysis of Salmonella enterica serovar Typhimurium under PhoP/PhoQ activation conditions. J Proteome Res 10:2992–3002 [View Article][PubMed]
    [Google Scholar]
  47. Zhao G., Weatherspoon N., Kong W., Curtiss R. III, Shi Y.( 2008). A dual-signal regulatory circuit activates transcription of a set of divergent operons in Salmonella typhimurium.. Proc Natl Acad Sci U S A 105:20924–20929 [View Article][PubMed]
    [Google Scholar]
  48. Zhou D., Han Y., Qin L., Chen Z., Qiu J., Song Y., Li B., Wang J., Guo Z. et al.( 2005). Transcriptome analysis of the Mg2+-responsive PhoP regulator in Yersinia pestis.. FEMS Microbiol Lett 250:85–95 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066803-0
Loading
/content/journal/micro/10.1099/mic.0.066803-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error