1887

Abstract

is an important cause of haemorrhagic septicaemia in fish and also of gastro- and extra-intestinal infections in humans. We have recently demonstrated that the PhoP-PhoQ two-component regulatory system plays important roles in both virulence and stress tolerance in . In this study, the proteomes of the WT and mutant strains were compared to define components of the PhoP regulon in EIB202. Overall, 18 proteins whose expression levels exhibited a twofold or greater change were identified; 13 of these proteins were found to require the presence of PhoP for full expression, while five were expressed at a higher level in the mutant background. Identified proteins represented diverse functional categories, including energy production, amino acid metabolism and oxidative stress defence. Quantitative real-time PCR analysis of the mRNA levels for the identified proteins confirmed the proteomics data. Interestingly, the β subunit of the FF ATP synthase, playing an important role in growth and virulence of , was listed as one of the proteins whose expression was greatly dependent on PhoP. The FF ATP synthase was encoded in a gene cluster () and the nine genes were transcribed as an operon. PhoP positively regulated the transcription of the nine ATP synthase genes and exerted this effect through direct binding to the promoter of . Overall, the results provide new insights into the PhoP regulon and unravel a novel role for PhoP in the regulation of the FF ATP synthase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066803-0
2013-07-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1340.html?itemId=/content/journal/micro/10.1099/mic.0.066803-0&mimeType=html&fmt=ahah

References

  1. Abbott S. L., Janda J. M..( 2006;). The genus Edwardsiella. .. Proteobacteria: Gamma ClassThe Prokaryotes, 3rd edn.72–89 Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Sackebrandt E.. New York: Springer; [CrossRef]
    [Google Scholar]
  2. Alkhuder K., Meibom K. L., Dubail I., Dupuis M., Charbit A..( 2009;). Glutathione provides a source of cysteine essential for intracellular multiplication of Francisella tularensis.. PLoS Pathog5:e1000284 [CrossRef][PubMed]
    [Google Scholar]
  3. Banbula A., Potempa J., Travis J., Fernandez-Catalén C., Mann K., Huber R., Bode W., Medrano F. J..( 1998;). Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 Å resolution. Structure6:1185–1193 [CrossRef][PubMed]
    [Google Scholar]
  4. Bjur E., Eriksson-Ygberg S., Aslund F., Rhen M..( 2006;). Thioredoxin 1 promotes intracellular replication and virulence of Salmonella enterica serovar Typhimurium. Infect Immun74:5140–5151 [CrossRef][PubMed]
    [Google Scholar]
  5. Calloni G., Chen T., Schermann S. M., Chang H. C., Genevaux P., Agostini F., Tartaglia G. G., Hayer-Hartl M., Hartl F. U..( 2012;). DnaK functions as a central hub in the E. coli chaperone network. Cell Rep1:251–264 [CrossRef][PubMed]
    [Google Scholar]
  6. Carmel-Harel O., Storz G..( 2000;). Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol54:439–461 [CrossRef][PubMed]
    [Google Scholar]
  7. Chakraborty S., Li M., Chatterjee C., Sivaraman J., Leung K. Y., Mok Y. K..( 2010;). Temperature and Mg2+ sensing by a novel PhoP-PhoQ two-component system for regulation of virulence in Edwardsiella tarda.. J Biol Chem285:38876–38888 [CrossRef][PubMed]
    [Google Scholar]
  8. Charles R. C., Harris J. B., Chase M. R., Lebrun L. M., Sheikh A., LaRocque R. C., Logvinenko T., Rollins S. M., Tarique A. et al.( 2009;). Comparative proteomic analysis of the PhoP regulon in Salmonella enterica serovar Typhi versus Typhimurium. PLoS ONE4:e6994 [CrossRef][PubMed]
    [Google Scholar]
  9. Cordwell S. J..( 2006;). Technologies for bacterial surface proteomics. Curr Opin Microbiol9:320–329 [CrossRef][PubMed]
    [Google Scholar]
  10. Di Pasqua R., Mamone G., Ferranti P., Ercolini D., Mauriello G..( 2010;). Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics10:1040–1049[PubMed]
    [Google Scholar]
  11. Eisenreich W., Dandekar T., Heesemann J., Goebel W..( 2010;). Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat Rev Microbiol8:401–412 [CrossRef][PubMed]
    [Google Scholar]
  12. Faucher S. P., Porwollik S., Dozois C. M., McClelland M., Daigle F..( 2006;). Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci U S A103:1906–1911 [CrossRef][PubMed]
    [Google Scholar]
  13. Garcia-del Portillo F., Foster J. W., Finlay B. B..( 1993;). Role of acid tolerance response genes in Salmonella typhimurium virulence. Infect Immun61:4489–4492[PubMed]
    [Google Scholar]
  14. Groisman E. A..( 2001;). The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol183:1835–1842 [CrossRef][PubMed]
    [Google Scholar]
  15. Hansen A. M., Qiu Y., Yeh N., Blattner F. R., Durfee T., Jin D. J..( 2005;). SspA is required for acid resistance in stationary phase by downregulation of H-NS in Escherichia coli.. Mol Microbiol56:719–734 [CrossRef][PubMed]
    [Google Scholar]
  16. Herrero M., de Lorenzo V., Timmis K. N..( 1990;). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol172:6557–6567[PubMed]
    [Google Scholar]
  17. Hohmann E. L., Oletta C. A., Killeen K. P., Miller S. I..( 1996;). phoP/phoQ-deleted Salmonella typhi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers. J Infect Dis173:1408–1414 [CrossRef][PubMed]
    [Google Scholar]
  18. Horzempa J., Carlson P. E. Jr, O’Dee D. M., Shanks R. M. Q., Nau G. J..( 2008;). Global transcriptional response to mammalian temperature provides new insight into Francisella tularensis pathogenesis. BMC Microbiol8:172 [CrossRef][PubMed]
    [Google Scholar]
  19. Jones H. M., Brajkovich C. M., Gunsalus R. P..( 1983;). In vivo 5′ terminus and length of the mRNA for the proton-translocating ATPase (unc) operon of Escherichia coli.. J Bacteriol155:1279–1287[PubMed]
    [Google Scholar]
  20. Kato A., Groisman E. A..Howard Hughes Medical Institute( 2008;). The PhoQ/PhoP regulatory network of Salmonella enterica.. Adv Exp Med Biol631:7–21 [CrossRef][PubMed]
    [Google Scholar]
  21. Koháryová M., Kolárová M..( 2008;). Oxidative stress and thioredoxin system. Gen Physiol Biophys27:71–84[PubMed]
    [Google Scholar]
  22. Laarman A. J., Ruyken M., Malone C. L., van Strijp J. A. G., Horswill A. R., Rooijakkers S. H. M..( 2011;). Staphylococcus aureus metalloprotease aureolysin cleaves complement C3 to mediate immune evasion. J Immunol186:6445–6453 [CrossRef][PubMed]
    [Google Scholar]
  23. Livak K. J., Schmittgen T. D..( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT Method. Methods25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  24. Lv Y., Xiao J., Liu Q., Wu H., Zhang Y., Wang Q..( 2012a;). Systematic mutation analysis of two-component signal transduction systems reveals EsrA-EsrB and PhoP-PhoQ as the major virulence regulators in Edwardsiella tarda.. Vet Microbiol157:190–199 [CrossRef][PubMed]
    [Google Scholar]
  25. Lv Y., Zheng J., Yang M., Wang Q., Zhang Y..( 2012b;). An Edwardsiella tarda mutant lacking UDP-glucose dehydrogenase shows pleiotropic phenotypes, attenuated virulence, and potential as a vaccine candidate. Vet Microbiol160:506–512 [CrossRef][PubMed]
    [Google Scholar]
  26. McEntire J. C., Carman G. M., Montville T. J..( 2004;). Increased ATPase activity is responsible for acid sensitivity of nisin-resistant Listeria monocytogenes ATCC 700302. Appl Environ Microbiol70:2717–2721 [CrossRef][PubMed]
    [Google Scholar]
  27. Mohanty B. R., Sahoo P. K..( 2007;). Edwardsiellosis in fish: a brief review. J Biosci32:S31331–1344 [CrossRef][PubMed]
    [Google Scholar]
  28. Muñoz-Elías E. J., McKinney J. D..( 2006;). Carbon metabolism of intracellular bacteria. Cell Microbiol8:10–22 [CrossRef][PubMed]
    [Google Scholar]
  29. Northen H., Paterson G. K., Constantino-Casas F., Bryant C. E., Clare S., Mastroeni P., Peters S. E., Maskell D. J..( 2010;). Salmonella enterica serovar Typhimurium mutants completely lacking the F0F1 ATPase are novel live attenuated vaccine strains. Vaccine28:940–949 [CrossRef][PubMed]
    [Google Scholar]
  30. Park S. B., Aoki T., Jung T. S..( 2012;). Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet Res43:67 [CrossRef][PubMed]
    [Google Scholar]
  31. Perez J. C., Shin D., Zwir I., Latifi T., Hadley T. J., Groisman E. A..( 2009;). Evolution of a bacterial regulon controlling virulence and Mg2+ homeostasis. PLoS Genet5:e1000428 [CrossRef][PubMed]
    [Google Scholar]
  32. Powell J. T., Morrison J. F..( 1978;). The purification and properties of the aspartate aminotransferase and aromatic-amino-acid aminotransferase from Escherichia coli.. Eur J Biochem87:391–400 [CrossRef][PubMed]
    [Google Scholar]
  33. Pressley M. E., Phelan P. E. III, Witten P. E., Mellon M. T., Kim C. H..( 2005;). Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish. Dev Comp Immunol29:501–513 [CrossRef][PubMed]
    [Google Scholar]
  34. Reed L. J., Muench H..( 1938;). A simple method of estimating fifty percent endpoints. Am J Epidemiol27:493–497
    [Google Scholar]
  35. Sem X. H., Rhen M..( 2012;). Pathogenicity of Salmonella enterica in Caenorhabditis elegans relies on disseminated oxidative stress in the infected host. PLoS ONE7:e45417 [CrossRef][PubMed]
    [Google Scholar]
  36. Sieprawska-Lupa M., Mydel P., Krawczyk K., Wójcik K., Puklo M., Lupa B., Suder P., Silberring J., Reed M. et al.( 2004;). Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother48:4673–4679 [CrossRef][PubMed]
    [Google Scholar]
  37. Srinivasa Rao P. S., Yamada Y., Leung K. Y..( 2003;). A major catalase (KatB) that is required for resistance to H2O2 and phagocyte-mediated killing in Edwardsiella tarda.. Microbiology149:2635–2644 [CrossRef][PubMed]
    [Google Scholar]
  38. Tozzi M. G., Camici M., Mascia L., Sgarrella F., Ipata P. L..( 2006;). Pentose phosphates in nucleoside interconversion and catabolism. FEBS J273:1089–1101 [CrossRef][PubMed]
    [Google Scholar]
  39. Tran S. L., Cook G. M..( 2005;). The F1F0-ATP synthase of Mycobacterium smegmatis is essential for growth. J Bacteriol187:5023–5028 [CrossRef][PubMed]
    [Google Scholar]
  40. Turnbull A. L., Surette M. G..( 2010;). Cysteine biosynthesis, oxidative stress and antibiotic resistance in Salmonella typhimurium.. Res Microbiol161:643–650 [CrossRef][PubMed]
    [Google Scholar]
  41. von Ballmoos C., Wiedenmann A., Dimroth P..( 2009;). Essentials for ATP synthesis by F1F0 ATP synthases. Annu Rev Biochem78:649–672 [CrossRef][PubMed]
    [Google Scholar]
  42. Wang Q., Yang M., Xiao J., Wu H., Wang X., Lv Y., Xu L., Zheng H., Wang S. et al.( 2009a;). Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS ONE4:e7646 [CrossRef][PubMed]
    [Google Scholar]
  43. Wang S., Deng K., Zaremba S., Deng X., Lin C., Wang Q., Tortorello M. L., Zhang W..( 2009b;). Transcriptomic response of Escherichia coli O157 : H7 to oxidative stress. Appl Environ Microbiol75:6110–6123 [CrossRef][PubMed]
    [Google Scholar]
  44. Xiao J., Wang Q., Liu Q., Wang X., Liu H., Zhang Y..( 2008;). Isolation and identification of fish pathogen Edwardsiella tarda from mariculture in China. Aquac Res40:13–17 [CrossRef]
    [Google Scholar]
  45. Xiao J., Wang Q., Liu Q., Xu L., Wang X., Wu H., Zhang Y..( 2009;). Characterization of Edwardsiella tarda rpoS: effect on serum resistance, chondroitinase activity, biofilm formation, and autoinducer synthetases expression. Appl Microbiol Biotechnol83:151–160 [CrossRef][PubMed]
    [Google Scholar]
  46. Yu J. L., Guo L..( 2011;). Quantitative proteomic analysis of Salmonella enterica serovar Typhimurium under PhoP/PhoQ activation conditions. J Proteome Res10:2992–3002 [CrossRef][PubMed]
    [Google Scholar]
  47. Zhao G., Weatherspoon N., Kong W., Curtiss R. III, Shi Y..( 2008;). A dual-signal regulatory circuit activates transcription of a set of divergent operons in Salmonella typhimurium.. Proc Natl Acad Sci U S A105:20924–20929 [CrossRef][PubMed]
    [Google Scholar]
  48. Zhou D., Han Y., Qin L., Chen Z., Qiu J., Song Y., Li B., Wang J., Guo Z. et al.( 2005;). Transcriptome analysis of the Mg2+-responsive PhoP regulator in Yersinia pestis.. FEMS Microbiol Lett250:85–95 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066803-0
Loading
/content/journal/micro/10.1099/mic.0.066803-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error