1887

Abstract

Bacterial small non-coding RNAs act as important regulators that control numerous cellular processes. Here we identified RaoN, a novel small RNA encoded in the - intergenic region on pathogenicity island-11 (SPI-11). RaoN contributes to survival under conditions of acid and oxidative stress combined with nutrient limitation, which partially mimic the intramacrophage environment. Indeed, inactivation of reduces the intramacrophage replication of serovar Typhimurium. Genome-wide transcriptome analysis revealed that the lactate dehydrogenase gene is upregulated in the knockout mutant. Notably, both inactivation and overexpression of in the WT strain render more sensitive to oxidative stress, particularly when combined with nutrient limitation. However, is not the sole determinant of RaoN function in facilitating intramacrophage survival of . Together, our data suggest that balanced regulation of expression by RaoN is necessary for survival under stress conditions and contributes to the intramacrophage growth of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066688-0
2013-07-01
2021-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1366.html?itemId=/content/journal/micro/10.1099/mic.0.066688-0&mimeType=html&fmt=ahah

References

  1. Altuvia S.. ( 2007;). Identification of bacterial small non-coding RNAs: experimental approaches. Curr Opin Microbiol10:257–261 [CrossRef][PubMed]
    [Google Scholar]
  2. Argaman L., Hershberg R., Vogel J., Bejerano G., Wagner E. G., Margalit H., Altuvia S.. ( 2001;). Novel small RNA-encoding genes in the intergenic regions of Escherichia coli . Curr Biol11:941–950 [CrossRef][PubMed]
    [Google Scholar]
  3. Bowden S. D., Rowley G., Hinton J. C., Thompson A.. ( 2009;). Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar typhimurium. Infect Immun77:3117–3126 [CrossRef][PubMed]
    [Google Scholar]
  4. Brantl S.. ( 2007;). Regulatory mechanisms employed by cis-encoded antisense RNAs. Curr Opin Microbiol10:102–109 [CrossRef][PubMed]
    [Google Scholar]
  5. Brown L., Elliott T.. ( 1996;). Efficient translation of the RpoS sigma factor in Salmonella typhimurium requires host factor I, an RNA-binding protein encoded by the hfq gene. J Bacteriol178:3763–3770[PubMed]
    [Google Scholar]
  6. Chao Y., Papenfort K., Reinhardt R., Sharma C. M., Vogel J.. ( 2012;). An atlas of Hfq-bound transcripts reveals 3′ UTRs as a genomic reservoir of regulatory small RNAs. EMBO J31:4005–4019 [CrossRef][PubMed]
    [Google Scholar]
  7. Curtiss R. III, Hassan J. O.. ( 1996;). Nonrecombinant and recombinant avirulent Salmonella vaccines for poultry. Vet Immunol Immunopathol54:365–372 [CrossRef][PubMed]
    [Google Scholar]
  8. Datsenko K. A., Wanner B. L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  9. Davis R. W.,, Botstein D., Roth J. R.. ( 1980;). Advanced Bacterial Genetics New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  10. De Keersmaecker S. C., Verhoeven T. L., Desair J., Marchal K., Vanderleyden J., Nagy I.. ( 2006;). Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol Lett259:89–96 [CrossRef][PubMed]
    [Google Scholar]
  11. Edwards R. A., Keller L. H., Schifferli D. M.. ( 1998;). Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene207:149–157 [CrossRef][PubMed]
    [Google Scholar]
  12. Fang F. C.. ( 2004;). Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol2:820–832 [CrossRef][PubMed]
    [Google Scholar]
  13. Foster J. W., Spector M. P.. ( 1995;). How Salmonella survive against the odds. Annu Rev Microbiol49:145–174 [CrossRef][PubMed]
    [Google Scholar]
  14. Galán J. E., Collmer A.. ( 1999;). Type III secretion machines: bacterial devices for protein delivery into host cells. Science284:1322–1328 [CrossRef][PubMed]
    [Google Scholar]
  15. Gay P., Le Coq D., Steinmetz M., Berkelman T., Kado C. I.. ( 1985;). Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol164:918–921[PubMed]
    [Google Scholar]
  16. Gong H., Vu G. P., Bai Y., Chan E., Wu R., Yang E., Liu F., Lu S.. ( 2011;). A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Pathog7:e1002120 [CrossRef][PubMed]
    [Google Scholar]
  17. Gottesman S., McCullen C. A., Guillier M., Vanderpool C. K., Majdalani N., Benhammou J., Thompson K. M., FitzGerald P. C., Sowa N. A., FitzGerald D. J.. ( 2006;). Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol71:1–11 [CrossRef][PubMed]
    [Google Scholar]
  18. Gunn J. S., Alpuche-Aranda C. M., Loomis W. P., Belden W. J., Miller S. I.. ( 1995;). Characterization of the Salmonella typhimurium pagC/pagD chromosomal region. J Bacteriol177:5040–5047[PubMed]
    [Google Scholar]
  19. Haraga A., Ohlson M. B., Miller S. I.. ( 2008;). Salmonellae interplay with host cells. Nat Rev Microbiol6:53–66 [CrossRef][PubMed]
    [Google Scholar]
  20. Hengge-Aronis R.. ( 2002;). Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev66:373–395 [CrossRef][PubMed]
    [Google Scholar]
  21. Hensel M.. ( 2000;). Salmonella pathogenicity island 2. Mol Microbiol36:1015–1023 [CrossRef][PubMed]
    [Google Scholar]
  22. Jackett P. S., Aber V. R., Lowrie D. B.. ( 1978;). Virulence and resistance to superoxide, low pH and hydrogen peroxide among strains of Mycobacterium tuberculosis . J Gen Microbiol104:37–45[PubMed][CrossRef]
    [Google Scholar]
  23. Jiang G. R., Nikolova S., Clark D. P.. ( 2001;). Regulation of the ldhA gene, encoding the fermentative lactate dehydrogenase of Escherichia coli . Microbiology147:2437–2446[PubMed]
    [Google Scholar]
  24. Jones B. D., Ghori N., Falkow S.. ( 1994;). Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med180:15–23 [CrossRef][PubMed]
    [Google Scholar]
  25. Kingsley R. A., Bäumler A. J.. ( 2000;). Salmonella interactions with professional phagocytes. Subcell Biochem33:321–342 [CrossRef][PubMed]
    [Google Scholar]
  26. Kröger C., Dillon S. C., Cameron A. D., Papenfort K., Sivasankaran S. K., Hokamp K., Chao Y., Sittka A., Hébrard M. et al. ( 2012;). The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc Natl Acad Sci U S A109:E1277–E1286 [CrossRef][PubMed]
    [Google Scholar]
  27. Laoide B. M., Ullmann A.. ( 1990;). Virulence dependent and independent regulation of the Bordetella pertussis cya operon. EMBO J9:999–1005[PubMed]
    [Google Scholar]
  28. Lee Y. H., Kim B. H., Kim J. H., Yoon W. S., Bang S. H., Park Y. K.. ( 2007;). CadC has a global translational effect during acid adaptation in Salmonella enterica serovar Typhimurium. J Bacteriol189:2417–2425 [CrossRef][PubMed]
    [Google Scholar]
  29. Lee Y. H., Kingston A. W., Helmann J. D.. ( 2012;). Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis. J Bacteriol194:993–1001 [CrossRef][PubMed]
    [Google Scholar]
  30. Loewen P. C., Hengge-Aronis R.. ( 1994;). The role of the sigma factor sigma S (KatF) in bacterial global regulation. Annu Rev Microbiol48:53–80 [CrossRef][PubMed]
    [Google Scholar]
  31. Maloy S. R., Roth J. R.. ( 1983;). Regulation of proline utilization in Salmonella typhimurium: characterization of put: :Mu d(Ap, lac) operon fusions. J Bacteriol154:561–568[PubMed]
    [Google Scholar]
  32. Maloy S. R., Stewart V. J., Taylor R. K.. ( 1996;). Genetic Analysis of Pathogenic Bacteria: a Laboratory Manual New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  33. Marianelli C., Cifani N., Pasquali P.. ( 2010;). Evaluation of antimicrobial activity of probiotic bacteria against Salmonella enterica subsp. enterica serovar typhimurium 1344 in a common medium under different environmental conditions. Res Microbiol161:673–680 [CrossRef][PubMed]
    [Google Scholar]
  34. Mastroeni P., Vazquez-Torres A., Fang F. C., Xu Y., Khan S., Hormaeche C. E., Dougan G.. ( 2000;). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo . J Exp Med192:237–248 [CrossRef][PubMed]
    [Google Scholar]
  35. Miller S. I., Kukral A. M., Mekalanos J. J.. ( 1989;). A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci U S A86:5054–5058 [CrossRef][PubMed]
    [Google Scholar]
  36. Mills D. M., Bajaj V., Lee C. A.. ( 1995;). A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol Microbiol15:749–759 [CrossRef][PubMed]
    [Google Scholar]
  37. Monack D. M., Mueller A., Falkow S.. ( 2004;). Persistent bacterial infections: the interface of the pathogen and the host immune system. Nat Rev Microbiol2:747–765 [CrossRef][PubMed]
    [Google Scholar]
  38. O’Neal C. R., Gabriel W. M., Turk A. K., Libby S. J., Fang F. C., Spector M. P.. ( 1994;). RpoS is necessary for both the positive and negative regulation of starvation survival genes during phosphate, carbon, and nitrogen starvation in Salmonella typhimurium. J Bacteriol176:4610–4616[PubMed]
    [Google Scholar]
  39. O’Toole G. A., Kolter R.. ( 1998;). Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol28:449–461 [CrossRef][PubMed]
    [Google Scholar]
  40. Otaka H., Ishikawa H., Morita T., Aiba H.. ( 2011;). PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proc Natl Acad Sci U S A108:13059–13064 [CrossRef][PubMed]
    [Google Scholar]
  41. Padalon-Brauch G., Hershberg R., Elgrably-Weiss M., Baruch K., Rosenshine I., Margalit H., Altuvia S.. ( 2008;). Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res36:1913–1927 [CrossRef][PubMed]
    [Google Scholar]
  42. Papenfort K., Pfeiffer V., Lucchini S., Sonawane A., Hinton J. C., Vogel J.. ( 2008;). Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. Mol Microbiol68:890–906 [CrossRef][PubMed]
    [Google Scholar]
  43. Papenfort K., Podkaminski D., Hinton J. C., Vogel J.. ( 2012;). The ancestral SgrS RNA discriminates horizontally acquired Salmonella mRNAs through a single G-U wobble pair. Proc Natl Acad Sci U S A109:E757–E764 [CrossRef][PubMed]
    [Google Scholar]
  44. Pedersen M. B., Gaudu P., Lechardeur D., Petit M. A., Gruss A.. ( 2012;). Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu Rev Food Sci Technol3:37–58 [CrossRef][PubMed]
    [Google Scholar]
  45. Peters J. M., Mooney R. A., Kuan P. F., Rowland J. L., Keles S., Landick R.. ( 2009;). Rho directs widespread termination of intragenic and stable RNA transcription. Proc Natl Acad Sci U S A106:15406–15411 [CrossRef][PubMed]
    [Google Scholar]
  46. Pfeiffer V., Sittka A., Tomer R., Tedin K., Brinkmann V., Vogel J.. ( 2007;). A small non-coding RNA of the invasion gene island (SPI-1) represses outer membrane protein synthesis from the Salmonella core genome. Mol Microbiol66:1174–1191 [CrossRef][PubMed]
    [Google Scholar]
  47. Rathman M., Sjaastad M. D., Falkow S.. ( 1996;). Acidification of phagosomes containing Salmonella typhimurium in murine macrophages. Infect Immun64:2765–2773[PubMed]
    [Google Scholar]
  48. Sabbagh S. C., Forest C. G., Lepage C., Leclerc J. M., Daigle F.. ( 2010;). So similar, yet so different: uncovering distinctive features in the genomes of Salmonella enterica serovars Typhimurium and Typhi. FEMS Microbiol Lett305:1–13 [CrossRef][PubMed]
    [Google Scholar]
  49. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  50. Sanderson K. E., Hessel A., Rudd K. E.. ( 1995;). Genetic map of Salmonella typhimurium, edition VIII. Microbiol Rev59:241–303[PubMed]
    [Google Scholar]
  51. Sittka A., Lucchini S., Papenfort K., Sharma C. M., Rolle K., Binnewies T. T., Hinton J. C., Vogel J.. ( 2008;). Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet4:e1000163 [CrossRef][PubMed]
    [Google Scholar]
  52. Sridhar J., Sambaturu N., Sabarinathan R., Ou H. Y., Deng Z., Sekar K., Rafi Z. A., Rajakumar K.. ( 2010;). sRNAscanner: a computational tool for intergenic small RNA detection in bacterial genomes. PLoS ONE5:e11970 [CrossRef][PubMed]
    [Google Scholar]
  53. Storz G., Vogel J., Wassarman K. M.. ( 2011;). Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell43:880–891 [CrossRef][PubMed]
    [Google Scholar]
  54. Stuehr D. J., Nathan C. F.. ( 1989;). Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med169:1543–1555 [CrossRef][PubMed]
    [Google Scholar]
  55. Talaat A. M., Howard S. T., Hale W. IV, Lyons R., Garner H., Johnston S. A.. ( 2002;). Genomic DNA standards for gene expression profiling in Mycobacterium tuberculosis . Nucleic Acids Res30:e104 [CrossRef][PubMed]
    [Google Scholar]
  56. Underhill D. M., Ozinsky A.. ( 2002;). Phagocytosis of microbes: complexity in action. Annu Rev Immunol20:825–852 [CrossRef][PubMed]
    [Google Scholar]
  57. Uzzau S., Figueroa-Bossi N., Rubino S., Bossi L.. ( 2001;). Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci U S A98:15264–15269 [CrossRef][PubMed]
    [Google Scholar]
  58. Valentin-Hansen P., Eriksen M., Udesen C.. ( 2004;). The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol Microbiol51:1525–1533 [CrossRef][PubMed]
    [Google Scholar]
  59. Vandal O. H., Roberts J. A., Odaira T., Schnappinger D., Nathan C. F., Ehrt S.. ( 2009;). Acid-susceptible mutants of Mycobacterium tuberculosis share hypersusceptibility to cell wall and oxidative stress and to the host environment. J Bacteriol191:625–631 [CrossRef][PubMed]
    [Google Scholar]
  60. Vazquez-Torres A., Jones-Carson J., Bäumler A. J., Falkow S., Valdivia R., Brown W., Le M., Berggren R., Parks W. T., Fang F. C.. ( 1999;). Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature401:804–808 [CrossRef][PubMed]
    [Google Scholar]
  61. Vazquez-Torres A., Jones-Carson J., Mastroeni P., Ischiropoulos H., Fang F. C.. ( 2000a;). Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med192:227–236 [CrossRef][PubMed]
    [Google Scholar]
  62. Vazquez-Torres A., Xu Y., Jones-Carson J., Holden D. W., Lucia S. M., Dinauer M. C., Mastroeni P., Fang F. C.. ( 2000b;). Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science287:1655–1658 [CrossRef][PubMed]
    [Google Scholar]
  63. Vogel J.. ( 2009;). A rough guide to the non-coding RNA world of Salmonella . Mol Microbiol71:1–11 [CrossRef][PubMed]
    [Google Scholar]
  64. Vogel H. J., Bonner D. M.. ( 1956;). Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem218:97–106[PubMed]
    [Google Scholar]
  65. Vogel J., Sharma C. M.. ( 2005;). How to find small non-coding RNAs in bacteria. Biol Chem386:1219–1238 [CrossRef][PubMed]
    [Google Scholar]
  66. Waters L. S., Storz G.. ( 2009;). Regulatory RNAs in bacteria. Cell136:615–628 [CrossRef][PubMed]
    [Google Scholar]
  67. Welsh J., McClelland M.. ( 1990;). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res18:7213–7218 [CrossRef][PubMed]
    [Google Scholar]
  68. West A. P., Brodsky I. E., Rahner C., Woo D. K., Erdjument-Bromage H., Tempst P., Walsh M. C., Choi Y., Shadel G. S., Ghosh S.. ( 2011;). TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature472:476–480 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066688-0
Loading
/content/journal/micro/10.1099/mic.0.066688-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error