1887

Abstract

Synthetic Biology is the ‘Engineering of Biology’ – it aims to use a forward-engineering design cycle based on specifications, modelling, analysis, experimental implementation, testing and validation to modify natural or design new, synthetic biology systems so that they behave in a predictable fashion. Motivated by the need for truly plug-and-play synthetic biological components, we present a comprehensive review of ways in which the various parts of a biological system can be modified systematically. In particular, we review the list of ‘dials’ that are available to the designer and discuss how they can be modelled, tuned and implemented. The dials are categorized according to whether they operate at the global, transcriptional, translational or post-translational level and the resolution that they operate at. We end this review with a discussion on the relative advantages and disadvantages of some dials over others.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067975-0
2013-07-01
2020-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1236.html?itemId=/content/journal/micro/10.1099/mic.0.067975-0&mimeType=html&fmt=ahah

References

  1. Alberts B., Johnson A., Lewis J., Raff M.,, Roberts K. &, Walter P. ( 2002;). Molecular Biology of the Cell, 4th edn. New York: Garland Science;
    [Google Scholar]
  2. Alon U.. ( 2007;). An Introduction to Systems Biology Boca Raton, FL: Chapman & Hall/CRC Press;
    [Google Scholar]
  3. Alper H., Fischer C., Nevoigt E., Stephanopoulos G.. ( 2005;). Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A102:12678–12683 [CrossRef][PubMed]
    [Google Scholar]
  4. Andersen J. B., Sternberg C., Poulsen L. K., Bjorn S. P., Givskov M., Molin S.. ( 1998;). New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol64:2240–2246[PubMed]
    [Google Scholar]
  5. Anderson J., Strelkowa N., Stan G.-B., Douglas T., Savulescu J., Barahona M., Papachristodoulou A.. ( 2012;). Engineering and ethical perspectives in synthetic biology. Rigorous, robust and predictable designs, public engagement and a modern ethical framework are vital to the continued success of synthetic biology. EMBO Rep13:584–590 [CrossRef][PubMed]
    [Google Scholar]
  6. Andrianantoandro E., Basu S., Karig D. K., Weiss R.. ( 2006;). Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol2:0028 [CrossRef][PubMed]
    [Google Scholar]
  7. Angov E.. ( 2011;). Codon usage: nature’s roadmap to expression and folding of proteins. Biotechnol J6:650–659 [CrossRef][PubMed]
    [Google Scholar]
  8. Arnold T. E. T., Yu J. J., Belasco J. G. J.. ( 1998;). mRNA stabilization by the ompA 5′ untranslated region: two protective elements hinder distinct pathways for mRNA degradation. RNA4:319–330[PubMed]
    [Google Scholar]
  9. Atkinson M. R. M., Savageau M. A. M., Myers J. T. J., Ninfa A. J. A.. ( 2003;). Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. . Cell113:597–607 [CrossRef][PubMed]
    [Google Scholar]
  10. Balbás M. D., Evans M. J., Hosfield D. J., Wongvipat J., Arora V. K., Watson P. A., Chen Y., Greene G. L., Shen Y., Sawyers C. L.. ( 2013;). Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife2:e00499 [CrossRef][PubMed]
    [Google Scholar]
  11. Becker G., Hengge-Aronis R.. ( 2001;). What makes an Escherichia coli promoter σS dependent? Role of the -13/-14 nucleotide promoter positions and region 2.5 of σS.. Mol Microbiol39:1153–1165 [CrossRef][PubMed]
    [Google Scholar]
  12. Beguerisse-Díaz M., Wang B., Desikan R., Barahona M.. ( 2012;). Squeeze-and-breathe evolutionary Monte Carlo optimization with local search acceleration and its application to parameter fitting. J R Soc Interface9:1925–1933 [CrossRef][PubMed]
    [Google Scholar]
  13. Beisel C. L., Smolke C. D.. ( 2009;). Design principles for riboswitch function. PLOS Comput Biol5:e1000363 [CrossRef][PubMed]
    [Google Scholar]
  14. Bernardo L. M., Johansson L. U., Skärfstad E., Shingler V.. ( 2009;). σ54-promoter discrimination and regulation by ppGpp and DksA. J Biol Chem284:828–838 [CrossRef][PubMed]
    [Google Scholar]
  15. Bouvet P. P., Belasco J. G. J.. ( 1992;). Control of RNase E-mediated RNA degradation by 5′-terminal base pairing in E. coli. Nature360:488–491 [CrossRef][PubMed]
    [Google Scholar]
  16. Boyd S., Vandenberghe L.. ( 2004;). Convex Optimisation Cambridge, UK: Cambridge University Press;[CrossRef]
    [Google Scholar]
  17. Brannigan J. A., Wilkinson A. J.. ( 2002;). Protein engineering 20 years on. Nat Rev Mol Cell Biol3:964–970 [CrossRef][PubMed]
    [Google Scholar]
  18. Brewster R. C., Jones D. L., Phillips R.. ( 2012;). Tuning promoter strength through RNA polymerase binding site design in Escherichia coli. PLOS Comput Biol8:e1002811 [CrossRef][PubMed]
    [Google Scholar]
  19. Buck M., Gallegos M. T., Studholme D. J., Guo Y., Gralla J. D.. ( 2000;). The bacterial enhancer-dependent σ54N) transcription factor. J Bacteriol182:4129–4136 [CrossRef][PubMed]
    [Google Scholar]
  20. Callura J. M., Cantor C. R., Collins J. J.. ( 2012;). Genetic switchboard for synthetic biology applications. Proc Natl Acad Sci U S A109:5850–5855 [CrossRef][PubMed]
    [Google Scholar]
  21. Canton B., Labno A., Endy D.. ( 2008;). Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol26:787–793 [CrossRef][PubMed]
    [Google Scholar]
  22. Carrier T. A., Keasling J. D.. ( 1997a;). Controlling messenger RNA stability in bacteria: strategies for engineering gene expression. Biotechnol Prog13:699–708 [CrossRef][PubMed]
    [Google Scholar]
  23. Carrier T. A., Keasling J. D.. ( 1997b;). Controlling messenger RNA stability in bacteria: strategies for engineering gene expression. Biotechnol Prog13:699–708 [CrossRef][PubMed]
    [Google Scholar]
  24. Chang A. C., Cohen S. N.. ( 1978;). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol134:1141–1156[PubMed]
    [Google Scholar]
  25. Chau A. H., Walter J. M., Gerardin J., Tang C., Lim W. A.. ( 2012;). Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell151:320–332 [CrossRef][PubMed]
    [Google Scholar]
  26. Chen H. H., Bjerknes M. M., Kumar R. R., Jay E. E.. ( 1994;). Determination of the optimal aligned spacing between the Shine-Dalgarno sequence and the translation initiation codon of Escherichia coli mRNAs. Nucleic Acids Res22:4953–4957 [CrossRef][PubMed]
    [Google Scholar]
  27. Chen S., Zhang H., Shi H., Ji W., Feng J., Gong Y., Yang Z., Ouyang Q.. ( 2012;). Automated design of genetic toggle switches with predetermined bistability. ACS Synth Biol1:284–290 [CrossRef][PubMed]
    [Google Scholar]
  28. Choi Y. J., Bourque D., Morel L., Groleau D., Míguez C. B.. ( 2006;). Multicopy integration and expression of heterologous genes in Methylobacterium extorquens ATCC 55366. Appl Environ Microbiol72:753–759 [CrossRef][PubMed]
    [Google Scholar]
  29. Cookson N. A., Mather W. H., Danino T., Mondragón-Palomino O., Williams R. J., Tsimring L. S., Hasty J.. ( 2011;). Queueing up for enzymatic processing: correlated signaling through coupled degradation. Mol Syst Biol [CrossRef]
    [Google Scholar]
  30. Cornish-Bowden A.. ( 2004;). Fundamentals of Enzyme Kinetics, 3rd edn. London: Portland Press;
    [Google Scholar]
  31. Cosentino C., Bates D. G.. ( 2012;). Feedback Control in Systems Biology Boca Raton, FL: Taylor & Francis/CRC Press.;
    [Google Scholar]
  32. Cox R. S., Surette M. G., Elowitz M. B.. ( 2007;). Programming gene expression with combinatorial promoters. Mol Syst Biol3
    [Google Scholar]
  33. Davis J. H., Rubin A. J., Sauer R. T.. ( 2011;). Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res39:1131–1141 [CrossRef][PubMed]
    [Google Scholar]
  34. Del Vecchio D., Ninfa A. J., Sontag E. D.. ( 2008;). Modular cell biology: retroactivity and insulation. Mol Syst Biol
    [Google Scholar]
  35. Deuschle U., Kammerer W., Gentz R., Bujard H.. ( 1986;). Promoters of Escherichia coli: a hierarchy of in vivo strength indicates alternate structures. EMBO J5:2987–2994[PubMed]
    [Google Scholar]
  36. Dixon N., Duncan J. N., Geerlings T., Dunstan M. S., McCarthy J. E. G., Leys D., Micklefield J.. ( 2010;). Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A107:2830–2835 [CrossRef][PubMed]
    [Google Scholar]
  37. Dolan, J., Anderson, J. & Papachristodoulou, A. (2012).Proceedings of the IEEE Conference on Decision and Control
  38. Dougan D. A. D., Reid B. G. B., Horwich A. L. A., Bukau B. B.. ( 2002;). ClpS, a substrate modulator of the ClpAP machine. Mol Cell9:673–683 [CrossRef][PubMed]
    [Google Scholar]
  39. Driessen A. J. M., Nouwen N.. ( 2008;). Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem77:643–667 [CrossRef][PubMed]
    [Google Scholar]
  40. Ebersbach G., Gerdes K.. ( 2005;). Plasmid segregation mechanisms. Annu Rev Genet39:453–479 [CrossRef][PubMed]
    [Google Scholar]
  41. Egbert R. G. R., Klavins E. E.. ( 2012;). Fine-tuning gene networks using simple sequence repeats. Proc Natl Acad Sci U S A109:16817–16822 [CrossRef][PubMed]
    [Google Scholar]
  42. Elleuche S., Pöggeler S.. ( 2010;). Inteins, valuable genetic elements in molecular biology and biotechnology. Appl Microbiol Biotechnol87:479–489 [CrossRef][PubMed]
    [Google Scholar]
  43. Ellis T., Wang X., Collins J. J.. ( 2009;). Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat Biotechnol27:465–471 [CrossRef][PubMed]
    [Google Scholar]
  44. Erbse A., Schmidt R., Bornemann T., Schneider-Mergener J., Mogk A., Zahn R., Dougan D. A., Bukau B.. ( 2006;). ClpS is an essential component of the N-end rule pathway in Escherichia coli. . Nature439:753–756 [CrossRef][PubMed]
    [Google Scholar]
  45. Figurski D. H., Meyer R. J., Helinski D. R.. ( 1979;). Suppression of Co1E1 replication properties by the Inc P-1 plasmid RK2 in hybrid plasmids constructed in vitro. J Mol Biol133:295–318 [CrossRef][PubMed]
    [Google Scholar]
  46. Flynn J. M. J., Levchenko I. I., Seidel M. M., Wickner S. H. S., Sauer R. T. R., Baker T. A. T.. ( 2001;). Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc Natl Acad Sci U S A98:10584–10589 [CrossRef][PubMed]
    [Google Scholar]
  47. Gardner T. S., Cantor C. R., Collins J. J.. ( 2000;). Construction of a genetic toggle switch in Escherichia coli. . Nature403:339–342 [CrossRef][PubMed]
    [Google Scholar]
  48. Gillespie D. T.. ( 1992;). A rigorous derivation of the chemical master equation. Physica A: Statist. Mechanics Applic188:404–425 [CrossRef]
    [Google Scholar]
  49. Gogarten J. P., Senejani A. G., Zhaxybayeva O., Olendzenski L., Hilario E.. ( 2002;). Inteins: structure, function, and evolution. Annu Rev Microbiol56:263–287 [CrossRef][PubMed]
    [Google Scholar]
  50. Gotta S. L., Miller O. L. Jr, French S. L.. ( 1991;). rRNA transcription rate in Escherichia coli. . J Bacteriol173:6647–6649[PubMed]
    [Google Scholar]
  51. Grossman A. D., Straus D. B., Walter W. A., Gross C. A.. ( 1987;). Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. . Genes Dev1:179–184 [CrossRef][PubMed]
    [Google Scholar]
  52. Gruber T. M., Gross C. A.. ( 2003;). Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol57:441–466 [CrossRef][PubMed]
    [Google Scholar]
  53. Grünwald D., Singer R. H.. ( 2010;). In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature467:604–607 [CrossRef][PubMed]
    [Google Scholar]
  54. Gur E., Sauer R. T.. ( 2008;). Recognition of misfolded proteins by Lon, a AAA(+) protease. Genes Dev22:2267–2277 [CrossRef][PubMed]
    [Google Scholar]
  55. Hakkaart M. J. J., van Gemen B., Veltkamp E., Nijkamp H. J. J.. ( 1985;). Maintenance of multicopy plasmid Clo DF13 III. Role of plasmid size and copy number in partitioning. Mol Gen Genet198:364–366 [CrossRef][PubMed]
    [Google Scholar]
  56. Hansen M. J., Chen L. H., Fejzo M. L., Belasco J. G.. ( 1994;). The ompA 5′ untranslated region impedes a major pathway for mRNA degradation in Escherichia coli. . Mol Microbiol12:707–716 [CrossRef][PubMed]
    [Google Scholar]
  57. Hasunuma K. K., Sekiguchi M. M.. ( 1979;). Effect of dna mutations on the replication of plasmid pSC101 in Escherichia coli K-12. J Bacteriol137:1095–1099[PubMed]
    [Google Scholar]
  58. Herman C. C., Thévenet D. D., Bouloc P. P., Walker G. C. G., D’Ari R. R.. ( 1998;). Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev12:1348–1355 [CrossRef][PubMed]
    [Google Scholar]
  59. Hirschberg K., Lippincott-Schwartz J.. ( 1999;). Secretory pathway kinetics and in vivo analysis of protein traffic from the Golgi complex to the cell surface. FASEB J13:Suppl 2S251–S256[PubMed]
    [Google Scholar]
  60. Hoskins J. R., Singh S. K., Maurizi M. R., Wickner S.. ( 2000;). Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc Natl Acad Sci U S A97:8892–8897 [CrossRef][PubMed]
    [Google Scholar]
  61. Isaacs F. J., Dwyer D. J., Ding C., Pervouchine D. D., Cantor C. R., Collins J. J.. ( 2004;). Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol22:841–847 [CrossRef][PubMed]
    [Google Scholar]
  62. Jensen P. R., Hammer K.. ( 1998;). The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl Environ Microbiol64:82–87[PubMed]
    [Google Scholar]
  63. Kelly J. R., Rubin A. J., Davis J. H., Ajo-Franklin C. M., Cumbers J., Czar M. J., de Mora K., Glieberman A. L., Monie D. D., Endy D.. ( 2009;). Measuring the activity of BioBrick promoters using an in vivo reference standard. J Biol Eng3:4 [CrossRef][PubMed]
    [Google Scholar]
  64. Kirstein J., Molière N., Dougan D. A., Turgay K.. ( 2009;). Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases 1–11. . Nat Rev Microbiol. 7:589–599 [CrossRef]
    [Google Scholar]
  65. Kittleson J. T., Cheung S., Anderson J. C.. ( 2011;). Rapid optimization of gene dosage in E. coli using DIAL strains. J Biol Eng5:10 [CrossRef][PubMed]
    [Google Scholar]
  66. Klumpp S.. ( 2011;). Growth-rate dependence reveals design principles of plasmid copy number control. PLoS ONE6:e20403 [CrossRef][PubMed]
    [Google Scholar]
  67. Klumpp S., Zhang Z., Hwa T.. ( 2009;). Growth rate-dependent global effects on gene expression in bacteria. Cell139:1366–1375 [CrossRef][PubMed]
    [Google Scholar]
  68. Koch B., Liljefors T., Persson T., Nielsen J., Kjelleberg S., Givskov M.. ( 2005;). The LuxR receptor: the sites of interaction with quorum-sensing signals and inhibitors. Microbiology151:3589–3602 [CrossRef][PubMed]
    [Google Scholar]
  69. Köhler J., Baumbach J., Taubert J., Specht M., Skusa A., Rüegg A., Rawlings C., Verrier P., Philippi S.. ( 2006;). Graph-based analysis and visualization of experimental results with ONDEX. Bioinformatics22:1383–1390 [CrossRef][PubMed]
    [Google Scholar]
  70. Komarova A. V., Tchufistova L. S., Dreyfus M., Boni I. V.. ( 2005;). AU-rich sequences within 5′ untranslated leaders enhance translation and stabilize mRNA in Escherichia coli. . J Bacteriol187:1344–1349 [CrossRef][PubMed]
    [Google Scholar]
  71. Kool A. J. A., Nijkamp H. J. H.. ( 1974;). Isolation and characterization of a copy mutant of the bacteriocinogenic plasmid Clo DF13. J Bacteriol120:569–578[PubMed]
    [Google Scholar]
  72. Kudla G., Murray A. W., Tollervey D., Plotkin J. B.. ( 2009;). Coding-sequence determinants of gene expression in Escherichia coli. . Science324:255–258 [CrossRef][PubMed]
    [Google Scholar]
  73. Kües U., Stahl U.. ( 1989;). Replication of plasmids in gram-negative bacteria. Microbiol Rev53:491–516[PubMed]
    [Google Scholar]
  74. Lanzer M., Bujard H.. ( 1988;). Promoters largely determine the efficiency of repressor action. Proc Natl Acad Sci U S A85:8973–8977 [CrossRef][PubMed]
    [Google Scholar]
  75. Lederer T., Kintrup M., Takahashi M., Sum P.-E., Ellestad G. A., Hillen W.. ( 1996;). Tetracycline analogs affecting binding to Tn10-Encoded Tet repressor trigger the same mechanism of induction. Biochemistry35:7439–7446 [CrossRef][PubMed]
    [Google Scholar]
  76. Lehmann M., Wyss M.. ( 2001;). Engineering proteins for thermostability: the use of sequence alignments versus rational design and directed evolution. Curr Opin Biotechnol12:371–375 [CrossRef][PubMed]
    [Google Scholar]
  77. Lestas I., Vinnicombe G., Paulsson J.. ( 2010;). Fundamental limits on the suppression of molecular fluctuations. Nature467:174–178 [CrossRef][PubMed]
    [Google Scholar]
  78. Lewis M., Chang G., Horton N. C., Kercher M. A., Pace H. C., Schumacher M. A., Brennan R. G., Lu P.. ( 1996;). Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science271:1247–1254 [CrossRef][PubMed]
    [Google Scholar]
  79. Lim H. N., Lee Y., Hussein R.. ( 2011;). Fundamental relationship between operon organization and gene expression. Proc Natl Acad Sci U S A108:10626–10631 [CrossRef][PubMed]
    [Google Scholar]
  80. Lim W. A., Alvania R., Marshall W. F.. ( 2012;). Cell biology 2.0. Trends Cell Biol22:611–612 [CrossRef][PubMed]
    [Google Scholar]
  81. Lin-Chao S., Chen W. T., Wong T. T.. ( 1992;). High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol6:3385–3393 [CrossRef][PubMed]
    [Google Scholar]
  82. Litcofsky K. D., Afeyan R. B., Krom R. J., Khalil A. S., Collins J. J.. ( 2012;). Iterative plug-and-play methodology for constructing and modifying synthetic gene networks. Nat Methods9:1077–1080 [CrossRef][PubMed]
    [Google Scholar]
  83. Lloyd G., Landini P., Busby S.. ( 2001;). Activation and repression of transcription initiation in bacteria. Essays Biochem37:17–31[PubMed]
    [Google Scholar]
  84. Lockless S. W., Muir T. W.. ( 2009;). Traceless protein splicing utilizing evolved split inteins. Proc Natl Acad Sci U S A106:10999–11004 [CrossRef][PubMed]
    [Google Scholar]
  85. Lutz R., Bujard H.. ( 1997;). Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res25:1203–1210 [CrossRef][PubMed]
    [Google Scholar]
  86. Lutz S., Patrick W. M.. ( 2004;). Novel methods for directed evolution of enzymes: quality, not quantity. Curr Opin Biotechnol15:291–297 [CrossRef][PubMed]
    [Google Scholar]
  87. Lynch S. A., Desai S. K., Sajja H. K., Gallivan J. P.. ( 2007;). A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chem Biol14:173–184 [CrossRef][PubMed]
    [Google Scholar]
  88. Ma W., Trusina A., El-Samad H., Lim W. A., Tang C.. ( 2009;). Defining network topologies that can achieve biochemical adaptation. Cell138:760–773 [CrossRef][PubMed]
    [Google Scholar]
  89. MacDonald J. T., Barnes C., Kitney R. I., Freemont P. S., Stan G.-B. V.. ( 2011;). Computational design approaches and tools for synthetic biology. Integr Biol (Camb)3:97–108 [CrossRef][PubMed]
    [Google Scholar]
  90. Mackie G. A.. ( 2013;). RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol11:45–57 [CrossRef][PubMed]
    [Google Scholar]
  91. Martoglio B., Dobberstein B.. ( 1998;). Signal sequences: more than just greasy peptides. Trends Cell Biol8:410–415 [CrossRef][PubMed]
    [Google Scholar]
  92. Mather W., Bennett M. R., Hasty J., Tsimring L. S.. ( 2009;). Delay-induced degrade-and-fire oscillations in small genetic circuits. Phys Rev Lett102:068105 [CrossRef][PubMed]
    [Google Scholar]
  93. McGinness K. E., Baker T. A., Sauer R. T.. ( 2006;). Engineering controllable protein degradation. Mol Cell22:701–707 [CrossRef][PubMed]
    [Google Scholar]
  94. Menart V., Jevševar S., Vilar M., Trobiš A., Pavko A.. ( 2003;). Constitutive versus thermoinducible expression of heterologous proteins in Escherichia coli based on strong PR,PL promoters from phage lambda. Biotechnol Bioeng83:181–190 [CrossRef][PubMed]
    [Google Scholar]
  95. Mileyko Y. Y., Joh R. I. R., Weitz J. S. J.. ( 2008;). Small-scale copy number variation and large-scale changes in gene expression. Proc Natl Acad Sci U S A105:16659–16664 [CrossRef][PubMed]
    [Google Scholar]
  96. Mirasoli M., Feliciano J., Michelini E., Daunert S., Roda A.. ( 2002;). Internal response correction for fluorescent whole-cell biosensors. Anal Chem74:5948–5953 [CrossRef][PubMed]
    [Google Scholar]
  97. Moon T. S., Lou C., Tamsir A., Stanton B. C., Voigt C. A.. ( 2012;). Genetic programs constructed from layered logic gates in single cells. Nature491:249–253 [CrossRef][PubMed]
    [Google Scholar]
  98. Mootz H. D., Muir T. W.. ( 2002;). Protein splicing triggered by a small molecule. J Am Chem Soc124:9044–9045 [CrossRef][PubMed]
    [Google Scholar]
  99. Morcos P. A.. ( 2007;). Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos. Biochem Biophys Res Commun358:521–527 [CrossRef][PubMed]
    [Google Scholar]
  100. Murphy K. F., Balázsi G., Collins J. J.. ( 2007;). Combinatorial promoter design for engineering noisy gene expression. Proc Natl Acad Sci U S A104:12726–12731 [CrossRef][PubMed]
    [Google Scholar]
  101. Murray J. D.. ( 2002;). Mathematical Biology Berlin, Heidelberg: Springer Verlag;
    [Google Scholar]
  102. Na D., Lee S., Lee D.. ( 2010;). Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with desired expression levels in prokaryotes. BMC Syst Biol4:71 [CrossRef][PubMed]
    [Google Scholar]
  103. Newbury S. F. S., Smith N. H. N., Higgins C. F. C.. ( 1987;). Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell51:1131–1143 [CrossRef][PubMed]
    [Google Scholar]
  104. Neylon C.. ( 2004;). Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res32:1448–1459 [CrossRef][PubMed]
    [Google Scholar]
  105. Nichols J. C., Matthews K. S.. ( 1997;). Combinatorial mutations of lac repressor. Stability of monomer-monomer interface is increased by apolar substitution at position 84. J Biol Chem272:18550–18557 [CrossRef][PubMed]
    [Google Scholar]
  106. Nordström K. K., Uhlin B. E. B.. ( 1992;). Runaway-replication plasmids as tools to produce large quantities of proteins from cloned genes in bacteria. Biotechnology (N Y)10:661–666 [CrossRef][PubMed]
    [Google Scholar]
  107. Oeffinger M., Zenklusen D.. ( 2012;). To the pore and through the pore: a story of mRNA export kinetics. Biochim Biophys Acta1819:494–506 [CrossRef][PubMed]
    [Google Scholar]
  108. Orth P., Schnappinger D., Hillen W., Saenger W., Hinrichs W.. ( 2000;). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol7:215–219 [CrossRef][PubMed]
    [Google Scholar]
  109. Osterman I. A., Evfratov S. A., Sergiev P. V., Dontsova O. A.. ( 2013;). Comparison of mRNA features affecting translation initiation and reinitiation. Nucleic Acids Res41:474–486 [CrossRef][PubMed]
    [Google Scholar]
  110. Panayotatos N.. ( 1984;). DNA replication regulated by the priming promoter. Nucleic Acids Res12:2641–2648 [CrossRef][PubMed]
    [Google Scholar]
  111. Papanikou E., Karamanou S., Economou A.. ( 2007;). Bacterial protein secretion through the translocase nanomachine. Nat Rev Microbiol5:839–851 [CrossRef][PubMed]
    [Google Scholar]
  112. Parsell D. A., Silber K. R., Sauer R. T.. ( 1990;). Carboxy-terminal determinants of intracellular protein degradation. Genes Dev4:277–286 [CrossRef][PubMed]
    [Google Scholar]
  113. Penumetcha P., Lau K., Zhu X., Davis K., Eckdahl T. T., Campbell A. M.. ( 2010;). Improving the Lac system for synthetic biology. BIOS81:7–15 [CrossRef]
    [Google Scholar]
  114. Perler F. B.. ( 2002;). InBase: the intein database. Nucleic Acids Res30:383–384 [CrossRef][PubMed]
    [Google Scholar]
  115. Perry R. H., Green D. W.. ( 1999;). Perry’s Chemical Engineers’ Handbook, 7th edn. New York: McGraw-Hill;
    [Google Scholar]
  116. Peterson J., Phillips G. J.. ( 2008;). New pSC101-derivative cloning vectors with elevated copy numbers. Plasmid59:193–201 [CrossRef][PubMed]
    [Google Scholar]
  117. Pfeuty B., Kaneko K.. ( 2009;). The combination of positive and negative feedback loops confers exquisite flexibility to biochemical switches. Phys Biol6:046013 [CrossRef][PubMed]
    [Google Scholar]
  118. Prindle A., Selimkhanov J., Danino T., Samayoa P., Goldberg A., Bhatia S. N., Hasty J.. ( 2012;). Genetic circuits in Salmonella typhimurium . ACS Synth Biol1:458–464 [CrossRef][PubMed]
    [Google Scholar]
  119. Purcell O., Savery N. J., Grierson C. S., di Bernardo M.. ( 2010;). A comparative analysis of synthetic genetic oscillators. J R Soc Interface7:1503–1524 [CrossRef][PubMed]
    [Google Scholar]
  120. Purcell O., Grierson C. S., Bernardo M., Savery N. J.. ( 2012;). . J Biol Eng6 [CrossRef]
    [Google Scholar]
  121. Purnick P. E. M., Weiss R.. ( 2009;). The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol10:410–422 [CrossRef][PubMed]
    [Google Scholar]
  122. Qi L. S., Larson M. H., Gilbert L. A., Doudna J. A., Weissman J. S., Arkin A. P., Lim W. A.. ( 2013;). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell152:1173–1183 [CrossRef][PubMed]
    [Google Scholar]
  123. RAEng ( 2009;). Synthetic Biology: Scope, Applications and Implications . . London: Royal Academy of Engineering;
  124. Raghavan R., Minnick M. F.. ( 2009;). Group I introns and inteins: disparate origins but convergent parasitic strategies. J Bacteriol191:6193–6202 [CrossRef][PubMed]
    [Google Scholar]
  125. Raj A., van Oudenaarden A.. ( 2008;). Nature, nurture, or chance: stochastic gene expression and its consequences. Cell135:216–226 [CrossRef][PubMed]
    [Google Scholar]
  126. Salis H. M., Mirsky E. A., Voigt C. A.. ( 2009;). Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol27:946–950 [CrossRef][PubMed]
    [Google Scholar]
  127. Satya Lakshmi O., Rao N. M.. ( 2009;). Evolving Lac repressor for enhanced inducibility. Protein Eng Des Sel22:53–58 [CrossRef][PubMed]
    [Google Scholar]
  128. Schleif R.. ( 2000;). Regulation of the L-arabinose operon of Escherichia coli. . Trends Genet16:559–565 [CrossRef][PubMed]
    [Google Scholar]
  129. Schmidt L., Inselburg J.. ( 1982;). ColE1 copy number mutants. J Bacteriol151:845–854[PubMed]
    [Google Scholar]
  130. Scott M., Gunderson C. W., Mateescu E. M., Zhang Z., Hwa T.. ( 2010;). Interdependence of cell growth and gene expression: origins and consequences. Science330:1099–1102 [CrossRef][PubMed]
    [Google Scholar]
  131. ).Decision and Control (CDC), 2012 IEEE 51st Annual Conferencehttp://www.cds.caltech.edu/~murray/papers/sm12-cdc.html
  132. Seo S. W., Yang J.-S., Kim I., Yang J., Min B. E., Kim S., Jung G. Y.. ( 2013;). Predictive design of mRNA translation initiation region to control prokaryotic translation efficiency. Metab Eng15:67–74 [CrossRef][PubMed]
    [Google Scholar]
  133. Shi J., Muir T. W.. ( 2005;). Development of a tandem protein trans-splicing system based on native and engineered split inteins. J Am Chem Soc127:6198–6206 [CrossRef][PubMed]
    [Google Scholar]
  134. Shizuya H., Birren B., Kim U. J., Mancino V., Slepak T., Tachiiri Y., Simon M.. ( 1992;). Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A89:8794–8797 [CrossRef][PubMed]
    [Google Scholar]
  135. Shong J., Jimenez Diaz M. R., Collins C. H.. ( 2012;). Towards synthetic microbial consortia for bioprocessing. Curr Opin Biotechnol23:798–802 [CrossRef][PubMed]
    [Google Scholar]
  136. Silber K. R. K., Keiler K. C. K., Sauer R. T. R.. ( 1992;). Tsp: a tail-specific protease that selectively degrades proteins with nonpolar C termini. Proc Natl Acad Sci U S A89:295–299 [CrossRef][PubMed]
    [Google Scholar]
  137. Silva-Rocha R., Martínez-García E., Calles B., Chavarría M., Arce-Rodríguez A., de Las Heras A., Páez-Espino A. D., Durante-Rodríguez G., Kim J. et al. ( 2013;). The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res41:Database issueD666–D675 [CrossRef][PubMed]
    [Google Scholar]
  138. Skretas G., Wood D. W.. ( 2005;). Regulation of protein activity with small-molecule-controlled inteins. Protein Sci14:523–532 [CrossRef][PubMed]
    [Google Scholar]
  139. Slusarczyk A. L., Lin A., Weiss R.. ( 2012;). Foundations for the design and implementation of synthetic genetic circuits. Nat Rev Genet13:406–420 [CrossRef][PubMed]
    [Google Scholar]
  140. Smith R. N., Aleksic J., Butano D., Carr A., Contrino S., Hu F., Lyne M., Lyne R., Kalderimis A. et al. ( 2012;). InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data. Bioinformatics28:3163–3165 [CrossRef][PubMed]
    [Google Scholar]
  141. Sternberg N.. ( 1990;). Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc Natl Acad Sci U S A87:103–107 [CrossRef][PubMed]
    [Google Scholar]
  142. Strelkowa N., Barahona M.. ( 2010;). Switchable genetic oscillator operating in quasi-stable mode. J R Soc Interface7:1071–1082 [CrossRef][PubMed]
    [Google Scholar]
  143. Stricker J., Cookson S., Bennett M. R., Mather W. H., Tsimring L. S., Hasty J.. ( 2008;). A fast, robust and tunable synthetic gene oscillator. Nature456:516–519 [CrossRef][PubMed]
    [Google Scholar]
  144. Swinburne I. A., Miguez D. G., Landgraf D., Silver P. A.. ( 2008;). Intron length increases oscillatory periods of gene expression in animal cells. Genes Dev22:2342–2346 [CrossRef][PubMed]
    [Google Scholar]
  145. Tan C., Marguet P., You L.. ( 2009;). Emergent bistability by a growth-modulating positive feedback circuit. Nat Chem Biol5:842–848 [CrossRef][PubMed]
    [Google Scholar]
  146. Tian T., Burrage K.. ( 2006;). Stochastic models for regulatory networks of the genetic toggle switch. Proc Natl Acad Sci U S A103:8372–8377 [CrossRef][PubMed]
    [Google Scholar]
  147. Tolia N. H., Joshua-Tor L.. ( 2006;). Strategies for protein coexpression in Escherichia coli. . Nat Methods3:55–64 [CrossRef][PubMed]
    [Google Scholar]
  148. Topp S., Reynoso C. M. K., Seeliger J. C., Goldlust I. S., Desai S. K., Murat D., Shen A., Puri A. W., Komeili A. et al. ( 2010;). Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol76:7881–7884 [CrossRef][PubMed]
    [Google Scholar]
  149. Tyson J. J., Chen K. C., Novak B.. ( 2003;). Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol15:221–231 [CrossRef][PubMed]
    [Google Scholar]
  150. Urbanowski M. L., Lostroh C. P., Greenberg E. P.. ( 2004;). Reversible acyl-homoserine lactone binding to purified Vibrio fischeri LuxR protein. J Bacteriol186:631–637 [CrossRef][PubMed]
    [Google Scholar]
  151. Villaverde A. A., Benito A. A., Viaplana E. E., Cubarsi R. R.. ( 1993;). Fine regulation of cI857-controlled gene expression in continuous culture of recombinant Escherichia coli by temperature. Appl Environ Microbiol59:3485–3487[PubMed]
    [Google Scholar]
  152. Vitreschak A. G., Rodionov D. A., Mironov A. A., Gelfand M. S.. ( 2004;). Riboswitches: the oldest mechanism for the regulation of gene expression?. Trends Genet20:44–50 [CrossRef][PubMed]
    [Google Scholar]
  153. Vogel U., Jensen K. F.. ( 1994;). The RNA chain elongation rate in Escherichia coli depends on the growth rate. J Bacteriol176:2807–2813[PubMed]
    [Google Scholar]
  154. Wachsmuth M., Findeiß S., Weissheimer N., Stadler P. F., Mörl M.. ( 2013;). De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Res41:2541–2551 [CrossRef][PubMed]
    [Google Scholar]
  155. Wang Y., deHaseth P. L.. ( 2003;). Sigma 32-dependent promoter activity in vivo: sequence determinants of the groE promoter. J Bacteriol185:5800–5806 [CrossRef][PubMed]
    [Google Scholar]
  156. Wang K. H., Sauer R. T., Baker T. A.. ( 2007;). ClpS modulates but is not essential for bacterial N-end rule degradation. Genes Dev21:403–408 [CrossRef][PubMed]
    [Google Scholar]
  157. Wang B., Barahona M., Buck M.. ( 2013;). A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens Bioelectron40:368–376 [CrossRef][PubMed]
    [Google Scholar]
  158. Welch M., Govindarajan S., Ness J. E., Villalobos A., Gurney A., Minshull J., Gustafsson C.. ( 2009;). Design parameters to control synthetic gene expression in Escherichia coli. PLoS ONE4:e7002 [CrossRef][PubMed]
    [Google Scholar]
  159. Wilkinson D. J.. ( 2011;). Stochastic Modelling for Systems Biology, , 2nd edn. Boca Raton, FL: Chapman & Hall/CRC Press.;
    [Google Scholar]
  160. Wilson C., Agard D. A.. ( 1991;). Engineering substrate specificity. Curr Opin Struct Biol1:617–623 [CrossRef]
    [Google Scholar]
  161. Yabuta M., Onai-Miura S., Ohsuye K.. ( 1995;). Thermo-inducible expression of a recombinant fusion protein by Escherichia coli lac repressor mutants. J Biotechnol39:67–73 [CrossRef][PubMed]
    [Google Scholar]
  162. Zhong C., Peng D., Ye W., Chai L., Qi J., Yu Z., Ruan L., Sun M.. ( 2011;). Determination of plasmid copy number reveals the total plasmid DNA amount is greater than the chromosomal DNA amount in Bacillus thuringiensis YBT-1520. PLoS ONE6:e16052 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067975-0
Loading
/content/journal/micro/10.1099/mic.0.067975-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error