-
Volume 96,
Issue 5,
2015
Volume 96, Issue 5, 2015
- Review
-
-
-
Nucleotide sequence conservation in paramyxoviruses; the concept of codon constellation
More LessThe stability and conservation of the sequences of RNA viruses in the field and the high error rates measured in vitro are paradoxical. The field stability indicates that there are very strong selective constraints on sequence diversity. The nature of these constraints is discussed. Apart from constraints on variation in cis-acting RNA and the amino acid sequences of viral proteins, there are other ones relating to the presence of specific dinucleotides such CpG and UpA as well as the importance of RNA secondary structures and RNA degradation rates. Recent other constraints identified in other RNA viruses, such as effects of secondary RNA structure on protein folding or modification of cellular tRNA complements, are also discussed. Using the family Paramyxoviridae, I show that the codon usage pattern (CUP) is (i) specific for each virus species and (ii) that it is markedly different from the host – it does not vary even in vaccine viruses that have been derived by passage in a number of inappropriate host cells. The CUP might thus be an additional constraint on variation, and I propose the concept of codon constellation to indicate the informational content of the sequences of RNA molecules relating not only to stability and structure but also to the efficiency of translation of a viral mRNA resulting from the CUP and the numbers and position of rare codons.
-
-
-
-
Cassava brown streak disease: a threat to food security in Africa
More LessCassava brown streak disease (CBSD) has emerged as the most important viral disease of cassava (Manihot esculenta) in Africa and is a major threat to food security. CBSD is caused by two distinct species of ipomoviruses, Cassava brown streak virus and Ugandan cassava brown streak virus, belonging to the family Potyviridae. Previously, CBSD was reported only from the coastal lowlands of East Africa, but recently it has begun to spread as an epidemic throughout the Great Lakes region of East and Central Africa. This new spread represents a major threat to the cassava-growing regions of West Africa. CBSD-resistant cassava cultivars are being developed through breeding, and transgenic RNA interference-derived field resistance to CBSD has also been demonstrated. This review aims to provide a summary of the most important studies on the aetiology, epidemiology and control of CBSD and to highlight key research areas that need prioritization.
-
- Animal
-
- RNA viruses
-
-
Phylogenetically distinct equine influenza viruses show different tropism for the swine respiratory tract
Influenza A viruses circulate in a wide range of animals. H3N8 equine influenza virus (EIV) is an avian-origin virus that has established in dogs as canine influenza virus (CIV) and has also been isolated from camels and pigs. Previous work suggests that mutations acquired during EIV evolution might have played a role in CIV emergence. Given the potential role of pigs as a source of human infections, we determined the ability of H3N8 EIVs to replicate in pig cell lines and in respiratory explants. We show that phylogenetically distinct EIVs display different infection phenotypes along the pig respiratory tract, but not in cell lines. Our results suggest that EIV displays a dynamic host range along its evolutionary history, supporting the view that evolutionary processes play important roles in host range and tropism and also underscoring the utility of using explant cultures to study influenza pathogenesis.
-
-
-
Two novel reassortants of avian influenza A (H5N6) virus in China
Eight avian influenza A (H5N6) viruses were isolated from live poultry markets (LPMs) in Sichuan and Jiangxi Provinces in China in 2014, including those close to the county where the human H5N6 infection occurred. Genetic and phylogenetic analyses revealed that these H5N6 viruses were novel reassortants between H5N1 clade 2.3.4 and H6N6 viruses, and had evolved into two distinct lineages (Sichuan and Jiangxi). Moreover, the human H5N6 virus was closely related to the avian-source viruses of Sichuan lineage. Notably, H5N6 viruses contained a T160A substitution in the haemagglutinin protein and an 11 aa deletion in the neuraminidase stalk, which may aid in enhancing viral affinity for human-like receptors and virulence in mammals. As the H5N1 virus infects humans through direct contact, infection with the novel H5N6 virus raised significant concerns that the H5 subtype was a likely candidate for a pandemic. Therefore, extensive and long-term surveillance of avian influenza viruses in LPMs is essential.
-
-
-
Identification of conformational neutralization sites on the fusion protein of mumps virus
More LessIn spite of the success of the mumps vaccination, recent mumps outbreaks have been reported even among individuals with a history of mumps vaccination. For a better understanding of why the vaccination failed in cases of vaccinees who fell ill during recent mumps outbreaks, the immunological events during infection and/or vaccination should be better defined. In the work presented here we sought to identify new neutralization sites on the mumps virus surface glycoproteins. By using anti-mumps mAbs, three amino acid positions at residues 221, 323 and 373 in the F protein of mumps virus were shown to be located in at least two conformational neutralization epitopes. mAbs that specifically target these sites effectively neutralized mumps virus in vitro. The newly acquired glycosylation site at position 373 or loss of the existing one at position 323 was identified as the mechanism behind the escape from the specific mAbs. Based on the findings of this study, we suggest that the influence of the antigenic structure of the F protein should not be ignored in a thorough investigation of the underlying mechanism of the mumps vaccine failure or when making a strategy for development of a new vaccine.
-
-
-
Bat and pig IFN-induced transmembrane protein 3 restrict cell entry by influenza virus and lyssaviruses
IFN-induced transmembrane protein 3 (IFITM3) is a restriction factor that blocks cytosolic entry of numerous viruses that utilize acidic endosomal entry pathways. In humans and mice, IFITM3 limits influenza-induced morbidity and mortality. Although many IFITM3-sensitive viruses are zoonotic, whether IFITMs function as antiviral restriction factors in mammalian species other than humans and mice is unknown. Here, IFITM3 orthologues in the microbat (Myotis myotis) and pig (Sus scrofa domesticus) were identified using rapid amplification of cDNA ends. Amino acid residues known to be important for IFITM3 function were conserved in the pig and microbat orthologues. Ectopically expressed pig and microbat IFITM3 co-localized with transferrin (early endosomes) and CD63 (late endosomes/multivesicular bodies). Pig and microbat IFITM3 restricted cell entry mediated by multiple influenza haemagglutinin subtypes and lyssavirus glycoproteins. Expression of pig or microbat IFITM3 in A549 cells reduced influenza virus yields and nucleoprotein expression. Conversely, small interfering RNA knockdown of IFITM3 in pig NPTr cells and primary microbat cells enhanced virus replication, demonstrating that these genes are functional in their species of origin at endogenous levels. In summary, we showed that IFITMs function as potent broad-spectrum antiviral effectors in two mammals – pigs and bats – identified as major reservoirs for emerging viruses.
-
-
-
Glycoprotein E of the Japanese encephalitis virus forms virus-like particles and induces syncytia when expressed by a baculovirus
More LessThe prM glycoprotein is thought to be a chaperone for the proper folding, membrane association and assembly of the envelope protein (E) of flaviviruses. The prM-E and E proteins of the Japanese encephalitis virus (JEV) were expressed in insect cells using both the baculovirus-expression system and the transient expression method. Protein expression was analysed by Western blotting and the cytopathic effect was observed by microscopy. In the baculovirus-expression system the E protein, with or without the prM protein, induced syncytial formation in Sf9 cells. Transient expression of prM-E also induced syncytia in Sf9 cells. Immunofluorescence revealed that in presence of prM, E proteins were endoplasmic reticulum-like in distribution, while in the absence of prM, E proteins were located on the cell surface. Sucrose gradient sedimentation and Western blot analysis indicated that the E protein expressed with or without the prM protein was secreted into the culture medium in particulate form. The formation of virus-like particles (VLPs) in the medium was confirmed by electron microscopy and immunoelectron microscopy. The results suggest that the E protein of JEV in the absence of prM, retained its fusion ability, by either cell surface expression or formation of VLPs. Moreover, based on the observation that co-expression of prM-E in Sf9 cells induced considerable syncytial formation, a novel, safe and simple antiviral screening approach is proposed for studying inhibitory antibodies, peptides or small molecules targeting the JEV E protein.
-
-
-
Construction of an infectious cDNA clone of genotype 1 avian hepatitis E virus: characterization of its pathogenicity in broiler breeders and demonstration of its utility in studying the role of the hypervariable region in virus replication
A full-length infectious cDNA clone of the genotype 1 Korean avian hepatitis E virus (avian HEV) (pT11-aHEV-K) was constructed and its infectivity and pathogenicity were investigated in leghorn male hepatoma (LMH) chicken cells and broiler breeders. We demonstrated that capped RNA transcripts from the pT11-aHEV-K clone were translation competent when transfected into LMH cells and infectious when injected intrahepatically into the livers of chickens. Gross and microscopic pathological lesions underpinned the avian HEV infection and helped characterize its pathogenicity in broiler breeder chickens. The avian HEV genome contains a hypervariable region (HVR) in ORF1. To demonstrate the utility of the avian HEV infectious clone, several mutants with various deletions in and beyond the known HVR were derived from the pT11-aHEV-K clone. The HVR-deletion mutants were replication competent in LMH cells, although the deletion mutants extending beyond the known HVR were non-viable. By using the pT11-aHEV-K infectious clone as the backbone, an avian HEV luciferase reporter replicon and HVR-deletion mutant replicons were also generated. The luciferase assay results of the reporter replicon and its mutants support the data obtained from the infectious clone and its derived mutants. To further determine the effect of HVR deletion on virus replication, the capped RNA transcripts from the wild-type pT11-aHEV-K clone and its mutants were injected intrahepatically into chickens. The HVR-deletion mutants that were translation competent in LMH cells displayed in chickens an attenuation phenotype of avian HEV infectivity, suggesting that the avian HEV HVR is important in modulating the virus infectivity and pathogenicity.
-
-
-
Annexin A2 is involved in the production of classical swine fever virus infectious particles
More LessAnnexin A2 (ANXA2) is an important host factor regulating several key processes in many viruses. To evaluate the potential involvement of ANXA2 in the life cycle of classical swine fever virus (CSFV), an RNA interference (RNAi) approach was utilized. Knockdown of ANXA2 did not impair CSFV RNA replication but significantly reduced CSFV production. A comparable reduction of extracellular and intracellular infectivity levels was detected, indicating that ANXA2 might play a role in CSFV assembly rather than in genome replication and virion release. Furthermore, ANXA2 was found to bind CSFV NS5A, an essential replicase component. Amino acids R338, N359, G378 of NS5A were revealed to be pivotal for the ANXA2–NS5A interaction. Substitutions of these amino acids had no effect on viral RNA replication but substantially reduced CSFV production, which might partly be due to these mutations destroying the ANXA2–NS5A interaction. These results suggested that ANXA2 might participate in CSFV production process by binding NS5A.
-
-
-
Prediction and characterization of novel epitopes of serotype A foot-and-mouth disease viruses circulating in East Africa using site-directed mutagenesis
Epitopes on the surface of the foot-and-mouth disease virus (FMDV) capsid have been identified by monoclonal antibody (mAb) escape mutant studies leading to the designation of four antigenic sites in serotype A FMDV. Previous work focused on viruses isolated mainly from Asia, Europe and Latin America. In this study we report on the prediction of epitopes in African serotype A FMDVs and testing of selected epitopes using reverse genetics. Twenty-four capsid amino acid residues were predicted to be of antigenic significance by analysing the capsid sequences (n = 56) using in silico methods, and six residues by correlating capsid sequence with serum–virus neutralization data. The predicted residues were distributed on the surface-exposed capsid regions, VP1–VP3. The significance of residue changes at eight of the predicted epitopes was tested by site-directed mutagenesis using a cDNA clone resulting in the generation of 12 mutant viruses involving seven sites. The effect of the amino acid substitutions on the antigenic nature of the virus was assessed by virus neutralization (VN) test. Mutations at four different positions, namely VP1-43, VP1-45, VP2-191 and VP3-132, led to significant reduction in VN titre (P value = 0.05, 0.05, 0.001 and 0.05, respectively). This is the first time, to our knowledge, that the antigenic regions encompassing amino acids VP1-43 to -45 (equivalent to antigenic site 3 in serotype O), VP2-191 and VP3-132 have been predicted as epitopes and evaluated serologically for serotype A FMDVs. This identifies novel capsid epitopes of recently circulating serotype A FMDVs in East Africa.
-
-
-
Last 20 aa of the West Nile virus NS1′ protein are responsible for its retention in cells and the formation of unique heat-stable dimers
More LessWest Nile virus (WNV), a mosquito-borne flavivirus, is the major cause of arboviral encephalitis in the USA. As with other members of the Japanese encephalitis virus serogroup, WNV produces an additional non-structural protein, NS1′, a C-terminal extended product of NS1 generated as the result of a −1 programmed ribosomal frameshift (PRF). We have previously shown that mutations abolishing the PRF, and consequently NS1′, resulted in reduced neuroinvasiveness. However, whether this was caused by the PRF event itself or by the lack of a PRF product, NS1′, or a combination of both, remains undetermined. Here, we showed that WNV NS1′ formed a unique subpopulation of heat- and low-pH-stable dimers. C-terminal truncations and mutational analysis employing an NS1′-expressing plasmid showed that stability of NS1′ dimers was linked to the penultimate 10 aa. To examine the role of NS1′ heat-stable dimers in virus replication and pathogenicity, a stop codon mutation was introduced into NS1′ to create a WNV producing a truncated version of NS1′ lacking the last 20 aa, but not affecting the PRF. NS1′ protein produced by this mutant virus was secreted more efficiently than WT NS1′, indicating that the sequence of the last 20 aa of NS1′ was responsible for its cellular retention. Further analysis of this mutant showed growth kinetics in cells and virulence in weanling mice after peripheral infection similar to the WT WNVKUN, suggesting that full-length NS1′ was not essential for virus replication in vitro and for virulence in mice.
-
-
-
Pregnancy serum facilitates hepatitis E virus replication in vitro
Hepatitis E virus (HEV) infection causes high mortality in pregnant women. However, the pathogenic mechanisms of HEV infection in pregnant women remain unknown. In this study, the roles of pregnancy serum in HEV infection were investigated using an efficient cell culture system. HEV infection was exacerbated by supplementing with pregnancy serum, especially theat in third trimester of pregnancy. Oestrogen receptors (ER-α and ER-β) were activated in cells supplemented with pregnancy serum and were significantly inhibited during HEV infection. Type I IFN, especially IFN-β, showed delayed upregulation in HEV-infected cells supplemented with the serum in the third trimester of pregnancy, which indicated that delayed IFN-β expression may facilitate viral replication. Results suggested that pregnancy serum accelerated HEV replication by suppressing oestrogen receptors and type I IFN in the early stage of infection.
-
-
-
The neonatal Fc receptor does not modulate hepatitis C virus neutralization
The neonatal Fc receptor (FcRn) is the only receptor known to be able to transport IgG across cell barriers and may therefore modulate virus infection. FcRn is expressed efficiently in hepatocytes. We therefore investigated the possible involvement of an FcRn-dependent mechanism in hepatitis C virus (HCV) neutralization. Our study, in both HCV pseudoparticles and HCV in cell-culture models, showed that FcRn was not involved in the intracellular neutralization of HCV, in contrast to the situation observed for influenza A virus.
-
-
-
Genetic characterization of human coxsackievirus A6 variants associated with atypical hand, foot and mouth disease: a potential role of recombination in emergence and pathogenicity
Human coxsackievirus A6 (CVA6) is an enterically transmitted enterovirus. Until recently, CVA6 infections were considered as being of minor clinical significance, and only rarely aetiologically linked with hand, foot and mouth disease (HFMD) associated with other species A enteroviruses (particularly EV71 and CVA16). From 2008 onwards, however, CVA6 infections have been associated with several outbreaks worldwide of atypical HFMD (aHFMD) accompanied by a varicelliform rash. We recently reported CVA6-associated eczema herpeticum occurring predominantly in children and young adults in Edinburgh in January and February 2014. To investigate genetic determinants of novel clinical phenotypes of CVA6, we genetically characterized and analysed CVA6 variants associated with eczema herpeticum in Edinburgh in 2014 and those with aHFMD in CAV isolates collected from 2008. A total of eight recombinant forms (RFs) have circulated worldwide over the past 10 years, with the particularly recent appearance of RF-H associated with eczema herpeticum cases in Edinburgh in 2014. Comparison of phylogenies and divergence of complete genome sequences of CVA6 identified recombination breakpoints in 2A–2C, within VP3, and between 5′ untranslated region and VP1. A Bayesian temporal reconstruction of CVA6 evolution since 2004 provided estimates of dates and the actual recombination events that generated more recently appearing recombination groups (RF-E, -F, -G and -H). Associations were observed between recombination groups and clinical presentations of herpangina, aHFMD and eczema herpeticum, but not with VP1 or other structural genes. These observations provided evidence that NS gene regions may potentially contribute to clinical phenotypes and outcomes of CVA6 infection.
-
-
-
Identification of a functional motif in the AqRV NS26 protein required for enhancing the fusogenic activity of FAST protein NS16
More LessAquareoviruses AqRVs have a close relationship with orthoreoviruses. However, they contain an additional genome segment, S11, which encodes nonstructural protein NS26. We previously showed that NS26 can enhance the fusogenic activity of the fusion-associated small transmembrane FAST protein NS16 from AqRV. In this study, a TLPK motif in NS26 was identified as being important for the enhancement. When the TLPK motif was deleted from NS26, the enhanced efficiency of the NS16-mediated cellcell fusion was significantly impaired. Further mutational analysis showed that the lysine K residue in the TLPK motif was critical for the enhancement. Additionally, deletion of the TLPK motif prevented NS26 from interacting with lysosomes. These findings suggested that the TLPK motif is important for NS26 to enhance the fusogenic activity of NS16, and NS26 may utilize the lysosome to benefit the fusion process.
-
- DNA viruses
-
-
Characterization of mAbs to chicken anemia virus and epitope mapping on its viral protein, VP1
Three (MoCAV/F2, MoCAV/F8 and MoCAV/F11) of four mouse mAbs established against the A2/76 strain of chicken anemia virus (CAV) showed neutralization activity. Immunoprecipitation showed a band at ~50 kDa in A2/76-infected cell lysates by neutralizing mAbs, corresponding to the 50 kDa capsid protein (VP1) of CAV, and the mAbs reacted with recombinant VP1 proteins expressed in Cos7 cells. MoCAV/F2 and MoCAV/F8 neutralized the 14 CAV strains tested, whereas MoCAV/F11 did not neutralize five of the strains, indicating distinct antigenic variation amongst the strains. In blocking immunofluorescence tests with the A2/76-infected cells, binding of MoCAV/F11 was not inhibited by the other mAbs. MoCAV/F2 inhibited the binding of MoCAV/F8 to the antigens and vice versa, suggesting that the two mAbs recognized the same epitope. However, mutations were found in different parts of VP1 of the escape mutants of each mAb: EsCAV/F2 (deletion of T89+A90), EsCAV/F8 (I261T) and EsCAV/F11 (E144G). Thus, the epitopes recognized by MoCAV/F2 and MoCAV/F8 seemed to be topographically close in the VP1 structure, suggesting that VP1 has at least two different neutralizing epitopes. However, MoCAV/F8 did not react with EsCAV/F2 or EsCAV/F8, suggesting that binding of MoCAV/F8 to the epitope requires coexistence of the epitope recognized by MoCAV/F2. In addition, MoCAV/F2, with a titre of 1 : 12 800 to the parent strain, neutralized EsCAV/F2 and EsCAV/F8 with low titres of 32 and 152, respectively. The similarity of the reactivity of MoCAV/F2 and MoCAV/F8 to VP1 may also suggest the existence of a single epitope recognized by these mAbs.
-
-
-
The ORF3 protein of porcine circovirus type 2 promotes secretion of IL-6 and IL-8 in porcine epithelial cells by facilitating proteasomal degradation of regulator of G protein signalling 16 through physical interaction
Porcine circovirus type 2 (PCV2) is the main aetiological agent of postweaning multisystemic wasting syndrome. The mechanism of pathogenicity associated with PCV2 infection is still not fully understood. Nevertheless, the fact that large amounts of proinflammatory cytokines within lymphoid tissues are released during the early stage of PCV2 infection may induce chronic inflammatory responses followed by the destruction of lymphoid tissues. However, how PCV2 infection causes an excessive inflammatory response in the host immune system during the early stage of PCV2 infection has still not been elucidated. In this study, we show that direct interaction between the PCV2 ORF3 and regulator of G protein signalling 16 (RGS16) within the cytoplasm of host cells leads to ubiquitin-mediated proteasomal degradation of RGS16. Facilitated degradation of the RGS16 by PCV2 ORF3 further enhances NFκB translocation into the nucleus through the ERK1/2 signalling pathway and increased IL-6 and IL-8 mRNA transcripts. Consequently, more severe inflammatory responses and leukocyte infiltration occur around host cells. This evidence may be the first clue explaining the molecular basis of how excessive amounts of proinflammatory cytokines within lymphoid tissues are released during the early stage of PCV2 infection.
-
-
-
Identification of DNA sequences that imply a novel gammaherpesvirus in seals
Various herpesviruses have been discovered in marine mammals and are associated with a wide spectrum of disease. In the present study we describe the detection and phylogenetic analysis of a novel gammaherpesvirus, tentatively called phocine herpesvirus 7 (PhHV-7), which was detected in samples collected during an outbreak of ulcerative gingivitis and glossitis from juvenile harbour seals (Phoca vitulina) at the Seal Rehabilitation and Research Centre, the Netherlands. The presence of this novel gammaherpesvirus was confirmed by viral metagenomics, while no other viruses other than four novel anelloviruses were detected. However, PhHV-7 DNA was also detected in harbour and grey seals (Halichoerus grypus) without gingivitis or glossitis. Genetic analysis of the partial polymerase gene of PhHV-7 detected in both species revealed limited sequence variation. Additional studies are needed to elucidate whether the viruses discovered played a role in the disease observed.
-
-
-
Calpains mediate the proteolytic modification of human cytomegalovirus UL112-113 proteins
More LessThe human cytomegalovirus (HCMV) UL112-113 gene is implicated in lytic viral replication. The UL112-113 proteins p34, p43, p50 and p84 are expressed via alternative splicing. However, the mechanism for the generation of three additional virus-associated proteins (p20, p26 and p28), which share the UL112 reading frame, remains unknown. Bioinformatic analyses indicated that p34, p43, p50 and p84 contain potential PEST-like degradation motifs. In this study, inhibitors of calpains, lysosomes and proteasomes reduced p20, p26 and p28 levels in virus-infected cells, suggesting the involvement of proteolytic modification. Moreover, maitotoxin, which increases intracellular calcium levels and activates calpain activity, induced the intracellular proteolysis of p34 into p20, p26 and p28 and the cleavage of p43, p50 and p84 into p38 and a novel protein, p34c. Proteolytic assays further indicated that p34, p43, p50 and p84 were substrates of calpain-1 and calpain-2 and that they generated proteolytic products that corresponded to those detected during the HCMV infectious period. Furthermore, substitution mutations in the putative calpain cleavage sites of p34 reduced accumulation of proteolytic products. The knockdown of endogenous calpain-1 and calpain-2 by RNA interference reduced accumulation of p20, p26 and p28 and concurrently increased levels of nascent p43, p50 and p84 during the infectious cycle. Intriguingly, calpain depletion enhanced viral genome synthesis. Moreover, HCMV-permissive cells that stably expressed p20, p26 or p28 exhibited reduced viral genome synthesis and mature virus production. Our findings suggest that cognate UL112-113 proteins derived from calpain-catalysed proteolysis are involved in the HCMV replication process.
-
-
-
Murine cytomegalovirus strains co-replicate at multiple tissue sites and establish co-persistence in salivary glands in the absence of Ly49H-mediated competition
More LessInfection with multiple genetically distinct strains of pathogen is common and can lead to positive (complementation) or negative (competitive) within-host interactions. These interactions can alter aspects of the disease process and help shape pathogen evolution. Infection of the host with multiple strains of cytomegalovirus (CMV) occurs frequently in humans and mice. Profound, NK-cell-mediated (apparent) competition has been identified in C57BL/6 mice, and prevented the replication and shedding of certain co-infecting CMV strains. However, the frequency of such strong competition has not been established. Other within-host interactions such as complementation or alternative forms of competition remain possible. Moreover, high rates of recombination in both human CMV and murine CMV (MCMV) suggest prolonged periods of viral co-replication, rather than strong competitive suppression. An established model was employed to investigate the different possible outcomes of multi-strain infection in other mouse strains. In this study, co-replication of up to four strains of MCMV in the spleen, liver and salivary glands was observed in both MCMV-susceptible and MCMV-resistant mice. In the absence of apparent competition, no other forms of competition were unmasked. In addition, no evidence of complementation between viral strains was observed. Importantly, co-replication of MCMV strains was apparent for up to 90 days in the salivary glands. These data indicated that competition was not the default outcome of multi-strain CMV infection. Prolonged, essentially neutral, co-replication may be the norm, allowing for multi-strain transmission and prolonged opportunities for recombination.
-
Volumes and issues
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month
