1887

Abstract

Infection with multiple genetically distinct strains of pathogen is common and can lead to positive (complementation) or negative (competitive) within-host interactions. These interactions can alter aspects of the disease process and help shape pathogen evolution. Infection of the host with multiple strains of cytomegalovirus (CMV) occurs frequently in humans and mice. Profound, NK-cell-mediated (apparent) competition has been identified in C57BL/6 mice, and prevented the replication and shedding of certain co-infecting CMV strains. However, the frequency of such strong competition has not been established. Other within-host interactions such as complementation or alternative forms of competition remain possible. Moreover, high rates of recombination in both human CMV and murine CMV (MCMV) suggest prolonged periods of viral co-replication, rather than strong competitive suppression. An established model was employed to investigate the different possible outcomes of multi-strain infection in other mouse strains. In this study, co-replication of up to four strains of MCMV in the spleen, liver and salivary glands was observed in both MCMV-susceptible and MCMV-resistant mice. In the absence of apparent competition, no other forms of competition were unmasked. In addition, no evidence of complementation between viral strains was observed. Importantly, co-replication of MCMV strains was apparent for up to 90 days in the salivary glands. These data indicated that competition was not the default outcome of multi-strain CMV infection. Prolonged, essentially neutral, co-replication may be the norm, allowing for multi-strain transmission and prolonged opportunities for recombination.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000047
2015-05-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/5/1127.html?itemId=/content/journal/jgv/10.1099/vir.0.000047&mimeType=html&fmt=ahah

References

  1. Ahlfors K., Ivarsson S. A., Harris S.. ( 1999; ). Report on a long-term study of maternal and congenital cytomegalovirus infection in Sweden. Review of prospective studies available in the literature. . Scand J Infect Dis 31:, 443–457. [CrossRef] [PubMed]
    [Google Scholar]
  2. Allan J. E., Shellam G. R.. ( 1984; ). Genetic control of murine cytomegalovirus infection: virus titres in resistant and susceptible strains of mice. . Arch Virol 81:, 139–150. [CrossRef] [PubMed]
    [Google Scholar]
  3. Andrews D. M., Estcourt M. J., Andoniou C. E., Wikstrom M. E., Khong A., Voigt V., Fleming P., Tabarias H., Hill G. R. et al. ( 2010; ). Innate immunity defines the capacity of antiviral T cells to limit persistent infection. . J Exp Med 207:, 1333–1343. [CrossRef] [PubMed]
    [Google Scholar]
  4. Arav-Boger R., Willoughby R. E., Pass R. F., Zong J. C., Jang W. J., Alcendor D., Hayward G. S.. ( 2002; ). Polymorphisms of the cytomegalovirus (CMV)-encoded tumor necrosis factor-alpha and beta-chemokine receptors in congenital CMV disease. . J Infect Dis 186:, 1057–1064. [CrossRef] [PubMed]
    [Google Scholar]
  5. Balmer O., Tanner M.. ( 2011; ). Prevalence and implications of multiple-strain infections. . Lancet Infect Dis 11:, 868–878. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bancroft G. J., Shellam G. R., Chalmer J. E.. ( 1981; ). Genetic influences on the augmentation of natural killer (NK) cells during murine cytomegalovirus infection: correlation with patterns of resistance. . J Immunol 126:, 988–994.[PubMed]
    [Google Scholar]
  7. Beyari M. M., Hodgson T. A., Cook R. D., Kondowe W., Molyneux E. M., Scully C. M., Teo C. G., Porter S. R.. ( 2003; ). Multiple human herpesvirus-8 infection. . J Infect Dis 188:, 678–689. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cardin R. D., Schaefer G. C., Allen J. R., Davis-Poynter N. J., Farrell H. E.. ( 2009; ). The M33 chemokine receptor homolog of murine cytomegalovirus exhibits a differential tissue-specific role during in vivo replication and latency. . J Virol 83:, 7590–7601. [CrossRef] [PubMed]
    [Google Scholar]
  9. Carlyle J. R., Mesci A., Fine J. H., Chen P., Bélanger S., Tai L. H., Makrigiannis A. P.. ( 2008; ). Evolution of the Ly49 and Nkrp1 recognition systems. . Semin Immunol 20:, 321–330. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chandler S. H., Handsfield H. H., McDougall J. K.. ( 1987; ). Isolation of multiple strains of cytomegalovirus from women attending a clinic for sexually transmitted disease. . J Infect Dis 155:, 655–660. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cicin-Sain L., Podlech J., Messerle M., Reddehase M. J., Koszinowski U. H.. ( 2005; ). Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. . J Virol 79:, 9492–9502. [CrossRef] [PubMed]
    [Google Scholar]
  12. Coaquette A., Bourgeois A., Dirand C., Varin A., Chen W., Herbein G.. ( 2004; ). Mixed cytomegalovirus glycoprotein B genotypes in immunocompromised patients. . Clin Infect Dis 39:, 155–161. [CrossRef] [PubMed]
    [Google Scholar]
  13. De Keyzer K., Van Laecke S., Peeters P., Vanholder R.. ( 2011; ). Human cytomegalovirus and kidney transplantation: a clinician’s update. . Am J Kidney Dis 58:, 118–126. [CrossRef] [PubMed]
    [Google Scholar]
  14. Drew W. L., Sweet E. S., Miner R. C., Mocarski E. S.. ( 1984; ). Multiple infections by cytomegalovirus in patients with acquired immunodeficiency syndrome: documentation by Southern blot hybridization. . J Infect Dis 150:, 952–953. [CrossRef] [PubMed]
    [Google Scholar]
  15. Eizuru Y., Minamishima Y., Hirose M., Ogata K., Tajiri A., Tada S., Inoue S., Kaketani K., Sumiyoshi A.. ( 1990; ). Isolation of multiple cytomegalovirus strains from a patient with adult T cell leukemia. . Intervirology 31:, 355–358.[PubMed]
    [Google Scholar]
  16. Faure-Della Corte M., Samot J., Garrigue I., Magnin N., Reigadas S., Couzi L., Dromer C., Velly J.-F., Déchanet-Merville J. et al. ( 2010; ). Variability and recombination of clinical human cytomegalovirus strains from transplantation recipients. . J Clin Virol 47:, 161–169. [CrossRef] [PubMed]
    [Google Scholar]
  17. Forbes C. A., Scalzo A. A., Degli-Esposti M. A., Coudert J. D.. ( 2014; ). Ly49C-dependent control of MCMV Infection by NK cells is cis-regulated by MHC class I molecules. . PLoS Pathog 10:, e1004161. [CrossRef] [PubMed]
    [Google Scholar]
  18. Fries B. C., Chou S., Boeckh M., Torok-Storb B.. ( 1994; ). Frequency distribution of cytomegalovirus envelope glycoprotein genotypes in bone marrow transplant recipients. . J Infect Dis 169:, 769–774. [CrossRef] [PubMed]
    [Google Scholar]
  19. Gorman S., Harvey N. L., Moro D., Lloyd M. L., Voigt V., Smith L. M., Lawson M. A., Shellam G. R.. ( 2006; ). Mixed infection with multiple strains of murine cytomegalovirus occurs following simultaneous or sequential infection of immunocompetent mice. . J Gen Virol 87:, 1123–1132. [CrossRef] [PubMed]
    [Google Scholar]
  20. Grundy J. E., Super M., Sweny P., Moorhead J., Lui S. F., Berry N. J., Fernando O. N., Griffiths P. D.. ( 1988; ). Symptomatic cytomegalovirus infection in seropositive kidney recipients: reinfection with donor virus rather than reactivation of recipient virus. . Lancet 332:, 132–135. [CrossRef] [PubMed]
    [Google Scholar]
  21. Huang E.-S., Alford C. A., Reynolds D. W., Stagno S., Pass R. F.. ( 1980; ). Molecular epidemiology of cytomegalovirus infections in women and their infants. . N Engl J Med 303:, 958–962. [CrossRef] [PubMed]
    [Google Scholar]
  22. Humar A., Kumar D., Gilbert C., Boivin G.. ( 2003; ). Cytomegalovirus (CMV) glycoprotein B genotypes and response to antiviral therapy, in solid-organ-transplant recipients with CMV disease. . J Infect Dis 188:, 581–584. [CrossRef] [PubMed]
    [Google Scholar]
  23. Ishibashi K., Tokumoto T., Tanabe K., Shirakawa H., Hashimoto K., Kushida N., Yanagida T., Inoue N., Yamaguchi O. et al. ( 2007; ). Association of the outcome of renal transplantation with antibody response to cytomegalovirus strain-specific glycoprotein H epitopes. . Clin Infect Dis 45:, 60–67. [CrossRef] [PubMed]
    [Google Scholar]
  24. Javier R. T., Sedarati F., Stevens J. G.. ( 1986; ). Two avirulent herpes simplex viruses generate lethal recombinants in vivo. . Science 234:, 746–748. [CrossRef] [PubMed]
    [Google Scholar]
  25. Manuel O., Pang X. L., Humar A., Kumar D., Doucette K., Preiksaitis J. K.. ( 2009; ). An assessment of donor-to-recipient transmission patterns of human cytomegalovirus by analysis of viral genomic variants. . J Infect Dis 199:, 1621–1628. [CrossRef] [PubMed]
    [Google Scholar]
  26. McWhorter A. R., Smith L. M., Masters L. L., Chan B., Shellam G. R., Redwood A. J.. ( 2013; ). Natural killer cell dependent within-host competition arises during multiple MCMV infection: consequences for viral transmission and evolution. . PLoS Pathog 9:, e1003111. [CrossRef] [PubMed]
    [Google Scholar]
  27. Puchhammer-Stöckl E., Görzer I., Zoufaly A., Jaksch P., Bauer C. C., Klepetko W., Popow-Kraupp T.. ( 2006; ). Emergence of multiple cytomegalovirus strains in blood and lung of lung transplant recipients. . Transplantation 81:, 187–194. [CrossRef] [PubMed]
    [Google Scholar]
  28. Quinlivan M., Breuer J.. ( 2006; ). Molecular studies of Varicella zoster virus. . Rev Med Virol 16:, 225–250. [CrossRef] [PubMed]
    [Google Scholar]
  29. Read A. F., Taylor L. H.. ( 2001; ). The ecology of genetically diverse infections. . Science 292:, 1099–1102. [CrossRef] [PubMed]
    [Google Scholar]
  30. Redwood A., Shellam G., Smith L.. ( 2013; ). Molecular evolution of murine cytomegalovirus genomes. . In Cytomegalovirus: From Molecular Pathogenesis to Intervention, , 2nd edn., pp. 23–37. Edited by Reddehase M... Norwich:: Caister Academic Press;.
    [Google Scholar]
  31. Renzette N., Gibson L., Jensen J. D., Kowalik T. F.. ( 2014; ). Human cytomegalovirus intrahost evolution-a new avenue for understanding and controlling herpesvirus infections. . Curr Opin Virol 8:, 109–115. [CrossRef] [PubMed]
    [Google Scholar]
  32. Roest R. W., Carman W. F., Maertzdorf J., Scoular A., Harvey J., Kant M., Van Der Meijden W. I., Verjans G. M. G. M., Osterhaus A. D. M. E.. ( 2004; ). Genotypic analysis of sequential genital herpes simplex virus type 1 (HSV-1) isolates of patients with recurrent HSV-1 associated genital herpes. . J Med Virol 73:, 601–604. [CrossRef] [PubMed]
    [Google Scholar]
  33. Roest R. W., Maertzdorf J., Kant M., van der Meijden W. I., Osterhaus A. D. M. E., Verjans G. M. G. M.. ( 2006; ). High incidence of genotypic variance between sequential herpes simplex virus type 2 isolates from HIV-1-seropositive patients with recurrent genital herpes. . J Infect Dis 194:, 1115–1118. [CrossRef] [PubMed]
    [Google Scholar]
  34. Saederup N., Aguirre S. A., Sparer T. E., Bouley D. M., Mocarski E. S.. ( 2001; ). Murine cytomegalovirus CC chemokine homolog MCK-2 (m131-129) is a determinant of dissemination that increases inflammation at initial sites of infection. . J Virol 75:, 9966–9976. [CrossRef] [PubMed]
    [Google Scholar]
  35. Sarcinella L., Mazzulli T., Willey B., Humar A.. ( 2002; ). Cytomegalovirus glycoprotein B genotype does not correlate with outcomes in liver transplant patients. . J Clin Virol 24:, 99–105. [CrossRef] [PubMed]
    [Google Scholar]
  36. Scalzo A. A., Fitzgerald N. A., Simmons A., La Vista A. B., Shellam G. R.. ( 1990; ). Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. . J Exp Med 171:, 1469–1483. [CrossRef] [PubMed]
    [Google Scholar]
  37. Scholz M., Doerr H. W., Cinatl J.. ( 2003; ). Human cytomegalovirus retinitis: pathogenicity, immune evasion and persistence. . Trends Microbiol 11:, 171–178. [CrossRef] [PubMed]
    [Google Scholar]
  38. Shellam G. R., Redwood A. J., Smith L. M., Gorman S.. ( 2007; ). Murine cytomegaloviruses and other herpesviruses. . In The Mouse in Biomedical Research, , 2nd edn., pp. 1–48. Edited by Fox J. G., Barthold S. W., Davisson M. T., Newcomer C. E., Quimby F. W., Smith A. L... London:: Academic Press;. [CrossRef]
    [Google Scholar]
  39. Smith L. M., McWhorter A. R., Masters L. L., Shellam G. R., Redwood A. J.. ( 2008; ). Laboratory strains of murine cytomegalovirus are genetically similar to but phenotypically distinct from wild strains of virus. . J Virol 82:, 6689–6696. [CrossRef] [PubMed]
    [Google Scholar]
  40. Smith L. M., McWhorter A. R., Shellam G. R., Redwood A. J.. ( 2013; ). The genome of murine cytomegalovirus is shaped by purifying selection and extensive recombination. . Virology 435:, 258–268. [CrossRef] [PubMed]
    [Google Scholar]
  41. Spector S. A., Hirata K. K., Newman T. R.. ( 1984; ). Identification of multiple cytomegalovirus strains in homosexual men with acquired immunodeficiency syndrome. . J Infect Dis 150:, 953–956. [CrossRef] [PubMed]
    [Google Scholar]
  42. Streblow D. N., Orloff S. L., Nelson J. A.. ( 2007; ). Acceleration of allograft failure by cytomegalovirus. . Curr Opin Immunol 19:, 577–582. [CrossRef] [PubMed]
    [Google Scholar]
  43. van Baarle D., Hovenkamp E., Kersten M. J., Klein M. R., Miedema F., van Oers M. H. J.. ( 1999; ). Direct Epstein–Barr virus (EBV) typing on peripheral blood mononuclear cells: no association between EBV type 2 infection or superinfection and the development of acquired immunodeficiency syndrome-related non-Hodgkin’s lymphoma. . Blood 93:, 3949–3955.[PubMed]
    [Google Scholar]
  44. West S. A., Griffin A. S., Gardner A.. ( 2007; ). Evolutionary explanations for cooperation. . Curr Biol 17:, R661–R672. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000047
Loading
/content/journal/jgv/10.1099/vir.0.000047
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error