1887

Abstract

Epitopes on the surface of the foot-and-mouth disease virus (FMDV) capsid have been identified by monoclonal antibody (mAb) escape mutant studies leading to the designation of four antigenic sites in serotype A FMDV. Previous work focused on viruses isolated mainly from Asia, Europe and Latin America. In this study we report on the prediction of epitopes in African serotype A FMDVs and testing of selected epitopes using reverse genetics. Twenty-four capsid amino acid residues were predicted to be of antigenic significance by analysing the capsid sequences ( = 56) using methods, and six residues by correlating capsid sequence with serum–virus neutralization data. The predicted residues were distributed on the surface-exposed capsid regions, VP1–VP3. The significance of residue changes at eight of the predicted epitopes was tested by site-directed mutagenesis using a cDNA clone resulting in the generation of 12 mutant viruses involving seven sites. The effect of the amino acid substitutions on the antigenic nature of the virus was assessed by virus neutralization (VN) test. Mutations at four different positions, namely VP1-43, VP1-45, VP2-191 and VP3-132, led to significant reduction in VN titre ( value = 0.05, 0.05, 0.001 and 0.05, respectively). This is the first time, to our knowledge, that the antigenic regions encompassing amino acids VP1-43 to -45 (equivalent to antigenic site 3 in serotype O), VP2-191 and VP3-132 have been predicted as epitopes and evaluated serologically for serotype A FMDVs. This identifies novel capsid epitopes of recently circulating serotype A FMDVs in East Africa.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000051
2015-05-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/5/1033.html?itemId=/content/journal/jgv/10.1099/vir.0.000051&mimeType=html&fmt=ahah

References

  1. Asfor A. S., Upadhyaya S., Knowles N. J., King D. P., Paton D. J., Mahapatra M.. ( 2014; ). Novel antibody binding determinants on the capsid surface of serotype O foot-and-mouth disease virus. . J Gen Virol 95:, 1104–1116. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ashkenazy H., Erez E., Martz E., Pupko T., Ben-Tal N.. ( 2010; ). ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. . Nucleic Acids Res 38: (Web Server issue), W529–W533. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bahnemann H. G.. ( 1975; ). Binary ethylenimine as an inactivant for foot-and-mouth disease virus and its application for vaccine production. . Arch Virol 47:, 47–56. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bahnemann H. G.. ( 1990; ). Inactivation of viral antigens for vaccine preparation with particular reference to the application of binary ethylenimine. . Vaccine 8:, 299–303. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bari F. D., Parida S., Tekleghiorghis T., Dekker A., Sangula A., Reeve R., Haydon D. T., Paton D. J., Mahapatra M.. ( 2014; ). Genetic and antigenic characterisation of serotype A FMD viruses from East Africa to select new vaccine strains. . Vaccine 32:, 5794–5800. [CrossRef] [PubMed]
    [Google Scholar]
  6. Barlow D. J., Edwards M. S., Thornton J. M.. ( 1986; ). Continuous and discontinuous protein antigenic determinants. . Nature 322:, 747–748. [CrossRef] [PubMed]
    [Google Scholar]
  7. Baxt B., Vakharia V., Moore D. M., Franke A. J., Morgan D. O.. ( 1989; ). Analysis of neutralizing antigenic sites on the surface of type A12 foot-and-mouth disease virus. . J Virol 63:, 2143–2151.[PubMed]
    [Google Scholar]
  8. Blignaut B., Visser N., Theron J., Rieder E., Maree F. F.. ( 2011; ). Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs. . J Gen Virol 92:, 849–859. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bolwell C. B., Clarke B. E., Parry N. R., Ouldridge E. J., Brown F., Rowlands D. J.. ( 1989; ). Epitope mapping of foot-and-mouth disease virus with neutralizing monoclonal antibodies. . J Gen Virol 70:, 59–68. [CrossRef] [PubMed]
    [Google Scholar]
  10. Borley D. W., Mahapatra M., Paton D. J., Esnouf R. M., Stuart D. I., Fry E. E.. ( 2013; ). Evaluation and use of in-silico structure-based epitope prediction with foot-and-mouth disease virus. . PLoS ONE 8:, e61122. [CrossRef] [PubMed]
    [Google Scholar]
  11. Bøtner A., Kakker N. K., Barbezange C., Berryman S., Jackson T., Belsham G. J.. ( 2011; ). Capsid proteins from field strains of foot-and-mouth disease virus confer a pathogenic phenotype in cattle on an attenuated, cell-culture-adapted virus. . J Gen Virol 92:, 1141–1151. [CrossRef] [PubMed]
    [Google Scholar]
  12. Chitray M., de Beer T. A. P., Vosloo W., Maree F. F.. ( 2014; ). Genetic heterogeneity in the leader and P1-coding regions of foot-and-mouth disease virus serotypes A and O in Africa. . Arch Virol 159:, 947–961.[PubMed]
    [Google Scholar]
  13. Crowther J. R., Farias S., Carpenter W. C., Samuel A. R.. ( 1993; ). Identification of a fifth neutralizable site on type O foot-and-mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. . J Gen Virol 74:, 1547–1553. [CrossRef] [PubMed]
    [Google Scholar]
  14. Doel T. R.. ( 1996; ). Natural and vaccine-induced immunity to foot and mouth disease: the prospects for improved vaccines. . Rev Sci Tech 15:, 883–911.[PubMed]
    [Google Scholar]
  15. Evans M. C., Phung P., Paquet A. C., Parikh A., Petropoulos C. J., Wrin T., Haddad M.. ( 2014; ). Predicting HIV-1 broadly neutralizing antibody epitope networks using neutralization titers and a novel computational method. . BMC Bioinformatics 15:, 77. [CrossRef] [PubMed]
    [Google Scholar]
  16. Ferris N. P., Donaldson A. I., Barnett I. T. R., Osborne R.W.. ( 1984; ). Inactivation, purification and stability of 146S antigens of foot-and-mouth disease virus for use as reagents in the complement fixation test. . Rev Sci Tech 3:, 339–350.
    [Google Scholar]
  17. Fry E. E., Newman J. W. I., Curry S., Najjam S., Jackson T., Blakemore W., Lea S. M., Miller L., Burman A. et al. ( 2005; ). Structure of foot-and-mouth disease virus serotype A1061 alone and complexed with oligosaccharide receptor: receptor conservation in the face of antigenic variation. . J Gen Virol 86:, 1909–1920. [CrossRef] [PubMed]
    [Google Scholar]
  18. Grazioli, S., Moretti, M., Barbieri, I., Crosatti, M. & Emiliana Brocchi, E. (2006). Use of monoclonal antibodies to identify and map new antigenic determinants involved in neutralisation on FMD viruses type SAT 1 and SAT 2. http://www.fao.org/ag/againfo/commissions/docs/research_group/paphos/App43.pdf
  19. Grazioli S., Fallacara F., Brocchi E.. ( 2013; ). Mapping of antigenic sites of foot-and-mouth disease virus serotype Asia 1 and relationships with sites described in other serotypes. . J Gen Virol 94:, 559–569. [CrossRef] [PubMed]
    [Google Scholar]
  20. Grubman M. J., Baxt B.. ( 2004; ). Foot-and-mouth disease. . Clin Microbiol Rev 17:, 465–493. [CrossRef] [PubMed]
    [Google Scholar]
  21. Hall T. A.. ( 1999; ). BioEdit: a user-friendly biological alignment editor and analysis program for windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  22. Jamal S. M., Ferrari G., Ahmed S., Normann P., Curry S., Belsham G. J.. ( 2011; ). Evolutionary analysis of serotype A foot-and-mouth disease viruses circulating in Pakistan and Afghanistan during 2002–2009. . J Gen Virol 92:, 2849–2864. [CrossRef] [PubMed]
    [Google Scholar]
  23. Kitson J. D. A., McCahon D., Belsham G. J.. ( 1990; ). Sequence analysis of monoclonal antibody resistant mutants of type O foot and mouth disease virus: evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. . Virology 179:, 26–34. [CrossRef] [PubMed]
    [Google Scholar]
  24. Kringelum J. V., Lundegaard C., Lund O., Nielsen M.. ( 2012; ). Reliable B cell epitope predictions: impacts of method development and improved benchmarking. . PLOS Comput Biol 8:, e1002829. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kumar R. M., Sanyal A., Hemadri D., Tosh C., Mohapatra J. K., Bandyopadhyay S. K.. ( 2004; ). Characterization of foot-and-mouth disease serotype asial viruses grown in the presence of polyclonal antisera in serology and nucleotide sequence analysis. . Arch Virol 149:, 1801–1814.[PubMed]
    [Google Scholar]
  26. Landau M., Mayrose I., Rosenberg Y., Glaser F., Martz E., Pupko T., Ben-Tal N.. ( 2005; ). ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. . Nucleic Acids Res 33: (Web Server issue), W299–W302. [CrossRef] [PubMed]
    [Google Scholar]
  27. Lawrence P., Pacheco J. M., Uddowla S., Hollister J., Kotecha A., Fry E., Rieder E.. ( 2013; ). Foot-and-mouth disease virus (FMDV) with a stable FLAG epitope in the VP1 G-H loop as a new tool for studying FMDV pathogenesis. . Virology 436:, 150–161. [CrossRef] [PubMed]
    [Google Scholar]
  28. Liu M. K. P., Hawkins N., Ritchie A. J., Ganusov V. V., Whale V., Brackenridge S., Li H., Pavlicek J. W., Cai F. et al. ( 2013; ). Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. . J Clin Invest 123:, 380–393.[PubMed]
    [Google Scholar]
  29. Mahapatra M., Aggarwal N., Cox S., Statham R. J., Knowles N. J., Barnett P. V., Paton D. J.. ( 2008; ). Evaluation of a monoclonal antibody-based approach for the selection of foot-and-mouth disease (FMD) vaccine strains. . Vet Microbiol 126:, 40–50. [CrossRef] [PubMed]
    [Google Scholar]
  30. Mahapatra M., Seki C., Upadhyaya S., Barnett P. V., La Torre J., Paton D. J.. ( 2011; ). Characterisation and epitope mapping of neutralising monoclonal antibodies to A24 Cruzeiro strain of FMDV. . Vet Microbiol 149:, 242–247. [CrossRef] [PubMed]
    [Google Scholar]
  31. Maree F. F., Blignaut B., Esterhuysen J. J., de Beer T. A. P., Theron J., O’Neill H. G., Rieder E.. ( 2011; ). Predicting antigenic sites on the foot-and-mouth disease virus capsid of the South African Territories types using virus neutralization data. . J Gen Virol 92:, 2297–2309. [CrossRef] [PubMed]
    [Google Scholar]
  32. Mateu M. G., Camarero J. A., Giralt E., Andreu D., Domingo E.. ( 1995; ). Direct evaluation of the immunodominance of a major antigenic site of foot-and-mouth disease virus in a natural host. . Virology 206:, 298–306. [CrossRef] [PubMed]
    [Google Scholar]
  33. McCahon D., Crowther J. R., Belsham G. J., Kitson J. D., Duchesne M., Have P., Meloen R. H., Morgan D. O., De Simone F.. ( 1989; ). Evidence for at least four antigenic sites on type O foot-and-mouth disease virus involved in neutralization; identification by single and multiple site monoclonal antibody-resistant mutants. . J Gen Virol 70:, 639–645. [CrossRef] [PubMed]
    [Google Scholar]
  34. Opperman P. A., Rotherham L. S., Esterhuysen J., Charleston B., Juleff N., Capozzo A. V., Theron J., Maree F. F.. ( 2014; ). Determining the epitope dominance on the capsid of a serotype SAT2 foot-and-mouth disease virus by mutational analyses. . J Virol 88:, 8307–8318. [CrossRef] [PubMed]
    [Google Scholar]
  35. Pan K., Deem M. W.. ( 2011; ). Quantifying selection and diversity in viruses by entropy methods, with application to the haemagglutinin of H3N2 influenza. . J R Soc Interface 8:, 1644–1653. [CrossRef] [PubMed]
    [Google Scholar]
  36. Parida S.. ( 2009; ). Vaccination against foot-and-mouth disease virus: strategies and effectiveness. . Expert Rev Vaccines 8:, 347–365. [CrossRef] [PubMed]
    [Google Scholar]
  37. Paton D. J., Valarcher J. F., Bergmann I., Matlho O. G., Zakharov V. M., Palma E. L., Thomson G. R.. ( 2005; ). Selection of foot and mouth disease vaccine strains–a review. . Rev Sci Tech 24:, 981–993.[PubMed]
    [Google Scholar]
  38. Pay T. W., Hingley P. J.. ( 1987; ). Correlation of 140S antigen dose with the serum neutralizing antibody response and the level of protection induced in cattle by foot-and-mouth disease vaccines. . Vaccine 5:, 60–64. [CrossRef] [PubMed]
    [Google Scholar]
  39. Piatti P., Hassard S., Newman J. F. E., Brown F.. ( 1995; ). Antigenic variants in a plaque-isolate of foot-and-mouth disease virus: implications for vaccine production. . Vaccine 13:, 781–784. [CrossRef] [PubMed]
    [Google Scholar]
  40. Qi T., Qiu T., Zhang Q., Tang K., Fan Y., Qiu J., Wu D., Zhang W., Chen Y. et al. ( 2014; ). SEPPA 2.0–more refined server to predict spatial epitope considering species of immune host and subcellular localization of protein antigen. . Nucleic Acids Res 42: (Web Server issue), W59–W63. [CrossRef] [PubMed]
    [Google Scholar]
  41. Reed L. J., Muench H.. ( 1938; ). A simple method of estimating fifty percent endpoints. . Am J Hyg 27:, 493–497.
    [Google Scholar]
  42. Reeve R., Blignaut B., Esterhuysen J. J., Opperman P., Matthews L., Fry E. E., de Beer T. A. P., Theron J., Rieder E. et al. ( 2010; ). Sequence-based prediction for vaccine strain selection and identification of antigenic variability in foot-and-mouth disease virus. . PLOS Comput Biol 6:, e1001027. [CrossRef] [PubMed]
    [Google Scholar]
  43. Rojas E. R., Carrillo E., Schiappacassi M., Campos R.. ( 1992; ). Modification of foot-and-mouth disease virus O1 Caseros after serial passages in the presence of antiviral polyclonal sera. . J Virol 66:, 3368–3372.[PubMed]
    [Google Scholar]
  44. Rubinstein N. D., Mayrose I., Martz E., Pupko T.. ( 2009; ). Epitopia: a web-server for predicting B-cell epitopes. . BMC Bioinformatics 10:, 287. [CrossRef] [PubMed]
    [Google Scholar]
  45. Rweyemamu M. M., Hingley P. J.. ( 1984; ). Food and mouth disease virus strain differentiation: analysis of the serological data. . J Biol Stand 12:, 225–229. [CrossRef] [PubMed]
    [Google Scholar]
  46. Rweyemamu M. M., Booth J. C., Head M., Pay T. W. F.. ( 1978; ). Microneutralization tests for serological typing and subtyping of foot-and-mouth disease virus strains. . J Hyg (Lond) 81:, 107–123. [CrossRef] [PubMed]
    [Google Scholar]
  47. Rweyemamu M., Roeder P., MacKay D., Sumption K., Brownlie J., Leforban Y.. ( 2008; ). Planning for the progressive control of foot-and-mouth disease worldwide. . Transbound Emerg Dis 55:, 73–87. [CrossRef] [PubMed]
    [Google Scholar]
  48. Saiz J. C., Gonzalez M. J., Borca M. V., Sobrino F., Moore D. M.. ( 1991; ). Identification of neutralizing antigenic sites on VP1 and VP2 of type A5 foot-and-mouth disease virus, defined by neutralization-resistant variants. . J Virol 65:, 2518–2524.[PubMed]
    [Google Scholar]
  49. Sarangi L. N., Mohapatra J. K., Subramaniam S., Sanyal A., Pattnaik B.. ( 2013; ). Antigenic site variation in foot-and-mouth disease virus serotype O grown under vaccinal serum antibodies in vitro. . Virus Res 176:, 273–279. [CrossRef] [PubMed]
    [Google Scholar]
  50. Schiappacassi M., Rieder Rojas E., Carrillo E., Campos R.. ( 1995; ). Response of foot-and-mouth disease virus C3 Resende to immunological pressure exerted in vitro by antiviral polyclonal sera. . Virus Res 36:, 77–85. [CrossRef] [PubMed]
    [Google Scholar]
  51. Seago J., Jackson T., Doel C., Fry E., Stuart D., Harmsen M. M., Charleston B., Juleff N.. ( 2012; ). Characterization of epitope-tagged foot-and-mouth disease virus. . J Gen Virol 93:, 2371–2381. [CrossRef] [PubMed]
    [Google Scholar]
  52. Shannon C. E.. ( 1948; ). A mathematical theory of communication. . Bell Syst Tech J 27:, 379–423. [CrossRef]
    [Google Scholar]
  53. Thomas A. A., Woortmeijer R. J., Puijk W., Barteling S. J.. ( 1988; ). Antigenic sites on foot-and-mouth disease virus type A10. . J Virol 62:, 2782–2789.[PubMed]
    [Google Scholar]
  54. Tosh C., Venkataramanan R., Pattnaik B., Hemadri D., Sanyal A.. ( 1999; ). Monoclonal antibodies to an Indian strain of type A foot-and-mouth disease virus. . Acta Virol 43:, 219–225.[PubMed]
    [Google Scholar]
  55. Upadhyaya S., Ayelet G., Paul G., King D. P., Paton D. J., Mahapatra M.. ( 2014; ). Genetic basis of antigenic variation in foot-and-mouth disease serotype A viruses from the Middle East. . Vaccine 32:, 631–638. [CrossRef] [PubMed]
    [Google Scholar]
  56. van Rensburg H. G., Henry T. M., Mason P. W.. ( 2004; ). Studies of genetically defined chimeras of a European type A virus and a South African Territories type 2 virus reveal growth determinants for foot-and-mouth disease virus. . J Gen Virol 85:, 61–68. [CrossRef] [PubMed]
    [Google Scholar]
  57. Wekesa S. N., Sangula A. K., Belsham G. J., Muwanika V. B., Heller R., Balinda S. N., Masembe C., Siegismund H. R.. ( 2014; ). Genetic diversity of serotype A foot-and-mouth disease viruses in Kenya from 1964 to 2013; implications for control strategies in eastern Africa. . Infect Genet Evol 21:, 408–417. [CrossRef] [PubMed]
    [Google Scholar]
  58. Yang G., Li S., Blackmon S., Ye J., Bradley K. C., Cooley J., Smith D., Hanson L., Cardona C. et al. ( 2013; ). Mutation tryptophan to leucine at position 222 of haemagglutinin could facilitate H3N2 influenza A virus infection in dogs. . J Gen Virol 94:, 2599–2608. [CrossRef] [PubMed]
    [Google Scholar]
  59. Zheng H., Guo J., Jin Y., Yang F., He J., Lv L., Zhang K., Wu Q., Liu X., Cai X.. ( 2013; ). Engineering foot-and-mouth disease viruses with improved growth properties for vaccine development. . PLoS ONE 8:, e55228. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000051
Loading
/content/journal/jgv/10.1099/vir.0.000051
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error