1887

Abstract

The stability and conservation of the sequences of RNA viruses in the field and the high error rates measured are paradoxical. The field stability indicates that there are very strong selective constraints on sequence diversity. The nature of these constraints is discussed. Apart from constraints on variation in -acting RNA and the amino acid sequences of viral proteins, there are other ones relating to the presence of specific dinucleotides such CpG and UpA as well as the importance of RNA secondary structures and RNA degradation rates. Recent other constraints identified in other RNA viruses, such as effects of secondary RNA structure on protein folding or modification of cellular tRNA complements, are also discussed. Using the family , I show that the codon usage pattern (CUP) is (i) specific for each virus species and (ii) that it is markedly different from the host – it does not vary even in vaccine viruses that have been derived by passage in a number of inappropriate host cells. The CUP might thus be an additional constraint on variation, and I propose the concept of codon constellation to indicate the informational content of the sequences of RNA molecules relating not only to stability and structure but also to the efficiency of translation of a viral mRNA resulting from the CUP and the numbers and position of rare codons.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.070789-0
2015-05-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/5/939.html?itemId=/content/journal/jgv/10.1099/vir.0.070789-0&mimeType=html&fmt=ahah

References

  1. Atkinson N. J. , Witteveldt J. , Evans D. J. , Simmonds P. . ( 2014; ). The influence of CpG and UpA dinucleotide frequencies on RNA virus replication and characterization of the innate cellular pathways underlying virus attenuation and enhanced replication. . Nucleic Acids Res 42:, 4527–4545. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ball L. A. , Pringle C. R. , Flanagan B. , Perepelitsa V. P. , Wertz G. W. . ( 1999; ). Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus. . J Virol 73:, 4705–4712.[PubMed]
    [Google Scholar]
  3. Barrett T. . ( 1999; ). Morbillivirus infections, with special emphasis on morbilliviruses of carnivores. . Vet Microbiol 69:, 3–13. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barrett T. , Subbarao S. M. , Belsham G. J. , Mahy B. W. . ( 1991; ). The molecular biology of the Morbilliviruses. . In The Paramyxoviruses, pp. 83–102. Edited by Kingsbury D. W. . . New York:: Plenum Press;. [CrossRef]
    [Google Scholar]
  5. Bird A. P. . ( 1980; ). DNA methylation and the frequency of CpG in animal DNA. . Nucleic Acids Res 8:, 1499–1504. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brennan-Laun S. E. , Ezelle H. J. , Li X.-L. , Hassel B. A. . ( 2014; ). RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting. . J Interferon Cytokine Res 34:, 275–288. [CrossRef] [PubMed]
    [Google Scholar]
  7. Calain P. , Roux L. . ( 1993; ). The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. . J Virol 67:, 4822–4830.[PubMed]
    [Google Scholar]
  8. Cannarozzi G. , Schraudolph N. N. , Faty M. , von Rohr P. , Friberg M. T. , Roth A. C. , Gonnet P. , Gonnet G. , Barral Y. . ( 2010; ). A role for codon order in translation dynamics. . Cell 141:, 355–367. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chandler L. A. , Jones P. A. . ( 1988; ). Hypomethylation of DNA in the regulation of gene expression. . Dev Biol (N Y 1985) 5:, 335–349.[PubMed]
    [Google Scholar]
  10. Davis M. , Sagan S. M. , Pezacki J. P. , Evans D. J. , Simmonds P. . ( 2008; ). Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses. . J Virol 82:, 11824–11836. [CrossRef] [PubMed]
    [Google Scholar]
  11. Desfosses A. , Goret G. , Farias Estrozi L. , Ruigrok R. W. , Gutsche I. . ( 2011; ). Nucleoprotein-RNA orientation in the measles virus nucleocapsid by three-dimensional electron microscopy. . J Virol 85:, 1391–1395. [CrossRef] [PubMed]
    [Google Scholar]
  12. Dittmar K. A. , Goodenbour J. M. , Pan T. . ( 2006; ). Tissue-specific differences in human transfer RNA expression. . PLoS Genet 2:, e221. [CrossRef] [PubMed]
    [Google Scholar]
  13. Domingo E. , Holland J. J. . ( 1994;). Mutation rates and rapid evolution of RNA viruses. . In The Evolutionary Biology of Viruses, pp. 161–184. Edited by Morse S. S. . . New York:: Raven Press Ltd;.
    [Google Scholar]
  14. Domingo E. , Wain-Hobson S. . ( 2009; ). The 30th anniversary of quasispecies. Meeting on ‘Quasispecies: past, present and future’. . EMBO Rep 10:, 444–448. [CrossRef] [PubMed]
    [Google Scholar]
  15. Drexler J. F. , Corman V. M. , Müller M. A. , Maganga G. D. , Vallo P. , Binger T. , Gloza-Rausch F. , Cottontail V. M. , Rasche A. et al. ( 2012; ). Bats host major mammalian paramyxoviruses. . Nat Commun 3:, 796. [CrossRef] [PubMed]
    [Google Scholar]
  16. Duan J. , Antezana M. A. . ( 2003; ). Mammalian mutation pressure, synonymous codon choice, and mRNA degradation. . J Mol Evol 57:, 694–701. [CrossRef] [PubMed]
    [Google Scholar]
  17. Forsbach A. , Nemorin J. G. , Montino C. , Müller C. , Samulowitz U. , Vicari A. P. , Jurk M. , Mutwiri G. K. , Krieg A. M. et al. ( 2008; ). Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. . J Immunol 180:, 3729–3738. [CrossRef] [PubMed]
    [Google Scholar]
  18. Goodman D. B. , Church G. M. , Kosuri S. . ( 2013; ). Causes and effects of N-terminal codon bias in bacterial genes. . Science 342:, 475–479. [CrossRef] [PubMed]
    [Google Scholar]
  19. Hausmann S. , Jacques J. P. , Kolakofsky D. . ( 1996; ). Paramyxovirus RNA editing and the requirement for hexamer genome length. . RNA 2:, 1033–1045.[PubMed]
    [Google Scholar]
  20. Hicks A. L. , Duffy S. . ( 2014; ). Cell tropism predicts long-term nucleotide substitution rates of mammalian RNA viruses. . PLoS Pathog 10:, e1003838. [CrossRef] [PubMed]
    [Google Scholar]
  21. Iseni F. , Baudin F. , Garcin D. , Marq J. B. , Ruigrok R. W. , Kolakofsky D. . ( 2002; ). Chemical modification of nucleotide bases and mRNA editing depend on hexamer or nucleoprotein phase in Sendai virus nucleocapsids. . RNA 8:, 1056–1067. [CrossRef] [PubMed]
    [Google Scholar]
  22. Jenkins G. M. , Holmes E. C. . ( 2003; ). The extent of codon usage bias in human RNA viruses and its evolutionary origin. . Virus Res 92:, 1–7. [CrossRef] [PubMed]
    [Google Scholar]
  23. Jensen S. , Thomsen A. R. . ( 2012; ). Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. . J Virol 86:, 2900–2910. [CrossRef] [PubMed]
    [Google Scholar]
  24. Karlin S. , Doerfler W. , Cardon L. R. . ( 1994; ). Why is CpG suppressed in the genomes of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses?. J Virol 68:, 2889–2897.[PubMed]
    [Google Scholar]
  25. Kolakofsky D. , Pelet T. , Garcin D. , Hausmann S. , Curran J. , Roux L. . ( 1998; ). Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. . J Virol 72:, 891–899.[PubMed]
    [Google Scholar]
  26. Krieg A. M. . ( 1996; ). Lymphocyte activation by CpG dinucleotide motifs in prokaryotic DNA. . Trends Microbiol 4:, 73–77. [CrossRef] [PubMed]
    [Google Scholar]
  27. Krieg A. M. . ( 2000; ). Immune effects and mechanisms of action of CpG motifs. . Vaccine 19:, 618–622. [CrossRef] [PubMed]
    [Google Scholar]
  28. Lamb R. A. , Parks G. D. . ( 2013;). Paramyxoviridae. . In Fields Virology, , 6th edn., pp. 957–995. Edited by Knipe D. M. , Howley P. M. . . Lippincott Williams;.
    [Google Scholar]
  29. Langlois R. A. , Albrecht R. A. , Kimble B. , Sutton T. , Shapiro J. S. , Finch C. , Angel M. , Chua M. A. , Gonzalez-Reiche A. S. et al. ( 2013; ). MicroRNA-based strategy to mitigate the risk of gain-of-function influenza studies. . Nat Biotechnol 31:, 844–847. [CrossRef] [PubMed]
    [Google Scholar]
  30. Lewis B. P. , Shih I. H. , Jones-Rhoades M. W. , Bartel D. P. , Burge C. B. . ( 2003; ). Prediction of mammalian microRNA targets. . Cell 115:, 787–798. [CrossRef] [PubMed]
    [Google Scholar]
  31. Li M. , Kao E. , Gao X. , Sandig H. , Limmer K. , Pavon-Eternod M. , Jones T. E. , Landry S. , Pan T. et al. ( 2012; ). Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. . Nature 491:, 125–128. [CrossRef] [PubMed]
    [Google Scholar]
  32. Li Y. , Lu J. , Han Y. , Fan X. , Ding S.-W. . ( 2013; ). RNA interference functions as an antiviral immunity mechanism in mammals. . Science 342:, 231–234. [CrossRef] [PubMed]
    [Google Scholar]
  33. Maillard P. V. , Ciaudo C. , Marchais A. , Li Y. , Jay F. , Ding S. W. , Voinnet O. . ( 2013; ). Antiviral RNA interference in mammalian cells. . Science 342:, 235–238. [CrossRef] [PubMed]
    [Google Scholar]
  34. Malathi K. , Saito T. , Crochet N. , Barton D. J. , Gale M. Jr , Silverman R. H. . ( 2010; ). RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. . RNA 16:, 2108–2119. [CrossRef] [PubMed]
    [Google Scholar]
  35. McFadden N. , Arias A. , Dry I. , Bailey D. , Witteveldt J. , Evans D. J. , Goodfellow I. , Simmonds P. . ( 2013; ). Influence of genome-scale RNA structure disruption on the replication of murine norovirus–similar replication kinetics in cell culture but attenuation of viral fitness in vivo. . Nucleic Acids Res 41:, 6316–6331. [CrossRef] [PubMed]
    [Google Scholar]
  36. Moura G. , Pinheiro M. , Arrais J. , Gomes A. C. , Carreto L. , Freitas A. , Oliveira J. L. , Santos M. A. . ( 2007; ). Large scale comparative codon-pair context analysis unveils general rules that fine-tune evolution of mRNA primary structure. . PLoS ONE 2:, e847. [CrossRef] [PubMed]
    [Google Scholar]
  37. Ogle J. M. , Ramakrishnan V. . ( 2005; ). Structural insights into translational fidelity. . Annu Rev Biochem 74:, 129–177. [CrossRef] [PubMed]
    [Google Scholar]
  38. Pomeroy, L. W., Bjørnstad, O. N. & Holmes, E. C. (2008). The evolutionary and epidemiological dynamics of the Paramyxoviridae. J Mol Evol 66 , 98–106.
  39. Randall R. E. , Goodbourn S. . ( 2008; ). Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. . J Gen Virol 89:, 1–47. [CrossRef] [PubMed]
    [Google Scholar]
  40. Rima B. K. , McFerran N. V. . ( 1997; ). Dinucleotide and stop codon frequencies in single-stranded RNA viruses. . J Gen Virol 78:, 2859–2870.[PubMed] [CrossRef]
    [Google Scholar]
  41. Rima, B. K., Earle, J. A. P., Baczko, K., ter Meulen, V., Liebert, U. G., Carstens, C., Carabaña, J., Caballero, M., Celma, M. L. & Fernandez-Munõz, R. (1997). Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J Gen Virol 78 , 97–106.
  42. Rima B. K. , Collin A. M. J. , Earle J. A. P. . ( 2005; ). Completion of the sequence of a cetacean morbillivirus and comparative analysis of the complete genome sequences of four morbilliviruses. . Virus Genes 30:, 113–119. [CrossRef] [PubMed]
    [Google Scholar]
  43. Rothberg P. G. , Wimmer E. . ( 1981; ). Mononucleotide and dinucleotide frequencies, and codon usage in poliovirion RNA. . Nucleic Acids Res 9:, 6221–6230. [CrossRef] [PubMed]
    [Google Scholar]
  44. Sharp P. M. , Li W. H. . ( 1986; ). An evolutionary perspective on synonymous codon usage in unicellular organisms. . J Mol Evol 24:, 28–38. [CrossRef] [PubMed]
    [Google Scholar]
  45. Simmonds P. , Tuplin A. , Evans D. J. . ( 2004; ). Detection of genome-scale ordered RNA structure (GORS) in genomes of positive-stranded RNA viruses: Implications for virus evolution and host persistence. . RNA 10:, 1337–1351. [CrossRef] [PubMed]
    [Google Scholar]
  46. Simmonds P. , Xia W. , Baillie J. K. , McKinnon K. . ( 2013; ). Modelling mutational and selection pressures on dinucleotides in eukaryotic phyla–selection against CpG and UpA in cytoplasmically expressed RNA and in RNA viruses. . BMC Genomics 14:, 610. [CrossRef] [PubMed]
    [Google Scholar]
  47. Sugiyama T. , Gursel M. , Takeshita F. , Coban C. , Conover J. , Kaisho T. , Akira S. , Klinman D. M. , Ishii K. J. . ( 2005; ). CpG RNA: identification of novel single-stranded RNA that stimulates human CD14+CD11c+ monocytes. . J Immunol 174:, 2273–2279. [CrossRef] [PubMed]
    [Google Scholar]
  48. Takeda M. , Nakatsu Y. , Ohno S. , Seki F. , Tahara M. , Hashiguchi T. , Yanagi Y. . ( 2006; ). Generation of measles virus with a segmented RNA genome. . J Virol 80:, 4242–4248. [CrossRef] [PubMed]
    [Google Scholar]
  49. Thorne H. V. , Dermott E. . ( 1977; ). Y-forms as possible intermediates in the replication of measles virus nucleocapsids. . Nature 268:, 345–347. [CrossRef] [PubMed]
    [Google Scholar]
  50. Tuller T. , Carmi A. , Vestsigian K. , Navon S. , Dorfan Y. , Zaborske J. , Pan T. , Dahan O. , Furman I. , Pilpel Y. . ( 2010; ). An evolutionarily conserved mechanism for controlling the efficiency of protein translation. . Cell 141:, 344–354. [CrossRef] [PubMed]
    [Google Scholar]
  51. Vignuzzi M. , Andino R. . ( 2012; ). Closing the gap: the challenges in converging theoretical, computational, experimental and real-life studies in virus evolution. . Curr Opin Virol 2:, 515–518. [CrossRef] [PubMed]
    [Google Scholar]
  52. Watts J. M. , Dang K. K. , Gorelick R. J. , Leonard C. W. , Bess J. W. Jr , Swanstrom R. , Burch C. L. , Weeks K. M. . ( 2009; ). Architecture and secondary structure of an entire HIV-1 RNA genome. . Nature 460:, 711–716. [CrossRef] [PubMed]
    [Google Scholar]
  53. Werling D. , Jungi T. W. . ( 2003; ). TOLL-like receptors linking innate and adaptive immune response. . Vet Immunol Immunopathol 91:, 1–12. [CrossRef] [PubMed]
    [Google Scholar]
  54. Wimmer E. , Paul A. V. . ( 2011; ). Synthetic poliovirus and other designer viruses: what have we learned from them?. Annu Rev Microbiol 65:, 583–609. [CrossRef] [PubMed]
    [Google Scholar]
  55. Witteveldt J. , Blundell R. , Maarleveld J. J. , McFadden N. , Evans D. J. , Simmonds P. . ( 2014; ). The influence of viral RNA secondary structure on interactions with innate host cell defences. . Nucleic Acids Res 42:, 3314–3329. [CrossRef] [PubMed]
    [Google Scholar]
  56. Woo P. C. Y. , Lau S. K. P. , Wong B. H. L. , Fan R. Y. Y. , Wong A. Y. P. , Zhang A. J. X. , Wu Y. , Choi G. K. Y. , Li K. S. M. et al. ( 2012; ). Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats. . Proc Natl Acad Sci U S A 109:, 5435–5440. [CrossRef] [PubMed]
    [Google Scholar]
  57. Yang C. , Skiena S. , Futcher B. , Mueller S. , Wimmer E. . ( 2013; ). Deliberate reduction of hemagglutinin and neuraminidase expression of influenza virus leads to an ultraprotective live vaccine in mice. . Proc Natl Acad Sci U S A 110:, 9481–9486. [CrossRef] [PubMed]
    [Google Scholar]
  58. Zhang Z. , Dai W. , Wang Y. , Lu C. , Fan H. . ( 2013; ). Analysis of synonymous codon usage patterns in torque teno sus virus 1 (TTSuV1). . Arch Virol 158:, 145–154. [CrossRef] [PubMed]
    [Google Scholar]
  59. Zhou T. , Gu W. , Ma J. , Sun X. , Lu Z. . ( 2005; ). Analysis of synonymous codon usage in H5N1 virus and other influenza A viruses. . Biosystems 81:, 77–86. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.070789-0
Loading
/content/journal/jgv/10.1099/vir.0.070789-0
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error