1887

Abstract

The human cytomegalovirus (HCMV) UL112-113 gene is implicated in lytic viral replication. The UL112-113 proteins p34, p43, p50 and p84 are expressed via alternative splicing. However, the mechanism for the generation of three additional virus-associated proteins (p20, p26 and p28), which share the UL112 reading frame, remains unknown. Bioinformatic analyses indicated that p34, p43, p50 and p84 contain potential PEST-like degradation motifs. In this study, inhibitors of calpains, lysosomes and proteasomes reduced p20, p26 and p28 levels in virus-infected cells, suggesting the involvement of proteolytic modification. Moreover, maitotoxin, which increases intracellular calcium levels and activates calpain activity, induced the intracellular proteolysis of p34 into p20, p26 and p28 and the cleavage of p43, p50 and p84 into p38 and a novel protein, p34c. Proteolytic assays further indicated that p34, p43, p50 and p84 were substrates of calpain-1 and calpain-2 and that they generated proteolytic products that corresponded to those detected during the HCMV infectious period. Furthermore, substitution mutations in the putative calpain cleavage sites of p34 reduced accumulation of proteolytic products. The knockdown of endogenous calpain-1 and calpain-2 by RNA interference reduced accumulation of p20, p26 and p28 and concurrently increased levels of nascent p43, p50 and p84 during the infectious cycle. Intriguingly, calpain depletion enhanced viral genome synthesis. Moreover, HCMV-permissive cells that stably expressed p20, p26 or p28 exhibited reduced viral genome synthesis and mature virus production. Our findings suggest that cognate UL112-113 proteins derived from calpain-catalysed proteolysis are involved in the HCMV replication process.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000040
2015-05-01
2019-09-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/5/1115.html?itemId=/content/journal/jgv/10.1099/vir.0.000040&mimeType=html&fmt=ahah

References

  1. Ahn J. H. , Jang W. J. , Hayward G. S. . ( 1999; ). The human cytomegalovirus IE2 and UL112-113 proteins accumulate in viral DNA replication compartments that initiate from the periphery of promyelocytic leukemia protein-associated nuclear bodies (PODs or ND10). . J Virol 73:, 10458–10471.[PubMed]
    [Google Scholar]
  2. Albrecht T. , Lee C. H. , Speelman D. J. , Steinsland O. S. . ( 1987; ). Inhibition of cytomegalovirus replication by smooth-muscle relaxing agents. . Proc Soc Exp Biol Med 186:, 41–46. [CrossRef] [PubMed]
    [Google Scholar]
  3. Albrecht T. , Boldogh I. , Fons M. , AbuBakar S. , Deng C. Z. . ( 1990; ). Cell activation signals and the pathogenesis of human cytomegalovirus. . Intervirology 31:, 68–75.[PubMed]
    [Google Scholar]
  4. Barrett A. J. , Kembhavi A. A. , Brown M. A. , Kirschke H. , Knight C. G. , Tamai M. , Hanada K. . ( 1982; ). l-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L. . Biochem J 201:, 189–198.[PubMed] [CrossRef]
    [Google Scholar]
  5. Belizario J. E. , Alves J. , Garay-Malpartida M. , Occhiucci J. M. . ( 2008; ). Coupling caspase cleavage and proteasomal degradation of proteins carrying PEST motif. . Curr Protein Pept Sci 9:, 210–220. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brereton H. M. , Chen J. , Rychkov G. , Harland M. L. , Barritt G. J. . ( 2001; ). Maitotoxin activates an endogenous non-selective cation channel and is an effective initiator of the activation of the heterologously expressed hTRPC-1 (transient receptor potential) non-selective cation channel in H4-IIE liver cells. . Biochim Biophys Acta 1540:, 107–126. [CrossRef] [PubMed]
    [Google Scholar]
  7. Campbell R. L. , Davies P. L. . ( 2012; ). Structure-function relationships in calpains. . Biochem J 447:, 335–351. [CrossRef] [PubMed]
    [Google Scholar]
  8. Chandler J. M. , Cohen G. M. , MacFarlane M. . ( 1998; ). Different subcellular distribution of caspase-3 and caspase-7 following Fas-induced apoptosis in mouse liver. . J Biol Chem 273:, 10815–10818. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen Z. , Knutson E. , Kurosky A. , Albrecht T. . ( 2001; ). Degradation of p21cip1 in cells productively infected with human cytomegalovirus. . J Virol 75:, 3613–3625. [CrossRef] [PubMed]
    [Google Scholar]
  10. Dick L. R. , Cruikshank A. A. , Destree A. T. , Grenier L. , McCormack T. A. , Melandri F. D. , Nunes S. L. , Palombella V. J. , Parent L. A. et al. ( 1997; ). Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. . J Biol Chem 272:, 182–188. [CrossRef] [PubMed]
    [Google Scholar]
  11. duVerle D. , Takigawa I. , Ono Y. , Sorimachi H. , Mamitsuka H. . ( 2010; ). CaMPDB: a resource for calpain and modulatory proteolysis. . Genome Inform 22:, 202–213. [CrossRef] [PubMed]
    [Google Scholar]
  12. duVerle D. A. , Ono Y. , Sorimachi H. , Mamitsuka H. . ( 2011; ). Calpain cleavage prediction using multiple kernel learning. . PLoS ONE 6:, e19035. [CrossRef] [PubMed]
    [Google Scholar]
  13. Fan Y. X. , Zhang Y. , Shen H. B. . ( 2013; ). LabCaS: labeling calpain substrate cleavage sites from amino acid sequence using conditional random fields. . Proteins 81:, 622–634. [CrossRef] [PubMed]
    [Google Scholar]
  14. Goll D. E. , Thompson V. F. , Li H. , Wei W. , Cong J. . ( 2003; ). The calpain system. . Physiol Rev 83:, 731–801.[PubMed] [CrossRef]
    [Google Scholar]
  15. Gonzalez-Noriega A. , Grubb J. H. , Talkad V. , Sly W. S. . ( 1980; ). Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. . J Cell Biol 85:, 839–852. [CrossRef] [PubMed]
    [Google Scholar]
  16. Huang C. F. , Wang Y. C. , Tsao D. A. , Tung S. F. , Lin Y. S. , Wu C. W. . ( 2000; ). Antagonism between members of the CNC-bZIP family and the immediate-early protein IE2 of human cytomegalovirus. . J Biol Chem 275:, 12313–12320. [CrossRef] [PubMed]
    [Google Scholar]
  17. Isler J. A. , Maguire T. G. , Alwine J. C. . ( 2005; ). Production of infectious human cytomegalovirus virions is inhibited by drugs that disrupt calcium homeostasis in the endoplasmic reticulum. . J Virol 79:, 15388–15397. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kagele D. , Rossetto C. C. , Tarrant M. T. , Pari G. S. . ( 2012; ). Analysis of the interactions of viral and cellular factors with human cytomegalovirus lytic origin of replication, oriLyt. . Virology 424:, 106–114. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim Y. E. , Ahn J. H. . ( 2010; ). Role of the specific interaction of UL112-113 p84 with UL44 DNA polymerase processivity factor in promoting DNA replication of human cytomegalovirus. . J Virol 84:, 8409–8421. [CrossRef] [PubMed]
    [Google Scholar]
  20. Knoblach S. M. , Alroy D. A. , Nikolaeva M. , Cernak I. , Stoica B. A. , Faden A. I. . ( 2004; ). Caspase inhibitor z-DEVD-fmk attenuates calpain and necrotic cell death in vitro and after traumatic brain injury. . J Cereb Blood Flow Metab 24:, 1119–1132. [CrossRef] [PubMed]
    [Google Scholar]
  21. Legrand A. M. , Bagnis R. . ( 1984; ). Effects of highly purified maitotoxin extracted from dinoflagellate Gambierdiscus toxicus on action potential of isolated rat heart. . J Mol Cell Cardiol 16:, 663–666. [CrossRef] [PubMed]
    [Google Scholar]
  22. Liu Z. , Cao J. , Gao X. , Ma Q. , Ren J. , Xue Y. . ( 2011; ). GPS-CCD: a novel computational program for the prediction of calpain cleavage sites. . PLoS ONE 6:, e19001. [CrossRef] [PubMed]
    [Google Scholar]
  23. McDowell M. E. , Purushothaman P. , Rossetto C. C. , Pari G. S. , Verma S. C. . ( 2013; ). Phosphorylation of Kaposi’s sarcoma-associated herpesvirus processivity factor ORF59 by a viral kinase modulates its ability to associate with RTA and oriLyt. . J Virol 87:, 8038–8052. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mocarski E. S. , Shenk T. , Griffiths P. D. , Pass R. F. . ( 2013; ). Cytomegalovirus. . In Field's Virology, , 6th edn., pp. 1960–2014. Edited by Knipe M. , Howley P. M. . . Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  25. Nokta M. , Eaton D. , Steinsland O. S. , Albrecht T. . ( 1987; ). Ca2+ responses in cytomegalovirus-infected fibroblasts of human origin. . Virology 157:, 259–267. [CrossRef] [PubMed]
    [Google Scholar]
  26. Ostrowska H. , Wojcik C. , Omura S. , Worowski K. . ( 1997; ). Lactacystin, a specific inhibitor of the proteasome, inhibits human platelet lysosomal cathepsin A-like enzyme. . Biochem Biophys Res Commun 234:, 729–732. [CrossRef] [PubMed]
    [Google Scholar]
  27. Pari G. S. . ( 2008; ). Nuts and bolts of human cytomegalovirus lytic DNA replication. . Curr Top Microbiol Immunol 325:, 153–166.[PubMed]
    [Google Scholar]
  28. Park M. Y. , Kim Y. E. , Seo M. R. , Lee J. R. , Lee C. H. , Ahn J. H. . ( 2006; ). Interactions among four proteins encoded by the human cytomegalovirus UL112-113 region regulate their intranuclear targeting and the recruitment of UL44 to prereplication foci. . J Virol 80:, 2718–2727. [CrossRef] [PubMed]
    [Google Scholar]
  29. Penfold M. E. , Mocarski E. S. . ( 1997; ). Formation of cytomegalovirus DNA replication compartments defined by localization of viral proteins and DNA synthesis. . Virology 239:, 46–61. [CrossRef] [PubMed]
    [Google Scholar]
  30. Rechsteiner M. . ( 1990; ). PEST sequences are signals for rapid intracellular proteolysis. . Semin Cell Biol 1:, 433–440.[PubMed]
    [Google Scholar]
  31. Rechsteiner M. , Rogers S. W. . ( 1996; ). PEST sequences and regulation by proteolysis. . Trends Biochem Sci 21:, 267–271. [CrossRef] [PubMed]
    [Google Scholar]
  32. Reddehase M. J. . ( 2013; ). Cytomegalovirus: From Molecular Pathogenesis to Intervention. Norfolk, UK:: Caister Academic Press;.
    [Google Scholar]
  33. Rossetto C. C. , Susilarini N. K. , Pari G. S. . ( 2011; ). Interaction of Kaposi’s sarcoma-associated herpesvirus ORF59 with oriLyt is dependent on binding with K-Rta. . J Virol 85:, 3833–3841. [CrossRef] [PubMed]
    [Google Scholar]
  34. Sharon-Friling R. , Shenk T. . ( 2014; ). Human cytomegalovirus pUL37x1-induced calcium flux activates PKCα, inducing altered cell shape and accumulation of cytoplasmic vesicles. . Proc Natl Acad Sci U S A 111:, E1140–E1148. [CrossRef] [PubMed]
    [Google Scholar]
  35. Sorimachi H. , Hata S. , Ono Y. . ( 2011; ). Impact of genetic insights into calpain biology. . J Biochem 150:, 23–37. [CrossRef] [PubMed]
    [Google Scholar]
  36. To A. , Bai Y. , Shen A. , Gong H. , Umamoto S. , Lu S. , Liu F. . ( 2011; ). Yeast two hybrid analyses reveal novel binary interactions between human cytomegalovirus-encoded virion proteins. . PLoS ONE 6:, e17796. [CrossRef] [PubMed]
    [Google Scholar]
  37. Tompa P. , Buzder-Lantos P. , Tantos A. , Farkas A. , Szilágyi A. , Bánóczi Z. , Hudecz F. , Friedrich P. . ( 2004; ). On the sequential determinants of calpain cleavage. . J Biol Chem 279:, 20775–20785. [CrossRef] [PubMed]
    [Google Scholar]
  38. Tsubuki S. , Saito Y. , Tomioka M. , Ito H. , Kawashima S. . ( 1996; ). Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. . J Biochem 119:, 572–576. [CrossRef] [PubMed]
    [Google Scholar]
  39. Wang S. K. , Duh C. Y. , Chang T. T. . ( 2000; ). Cloning and identification of regulatory gene UL76 of human cytomegalovirus. . J Gen Virol 81:, 2407–2416.[PubMed] [CrossRef]
    [Google Scholar]
  40. Wang S. K. , Duh C. Y. , Wu C. W. . ( 2004; ). Human cytomegalovirus UL76 encodes a novel virion-associated protein that is able to inhibit viral replication. . J Virol 78:, 9750–9762. [CrossRef] [PubMed]
    [Google Scholar]
  41. Wang S. K. , Hu C. H. , Lu M. C. , Duh C. Y. , Liao P. C. , Tyan Y. C. . ( 2009; ). Novel virus-associated proteins encoded by UL112-113 of human cytomegalovirus. . J Gen Virol 90:, 2840–2848. [CrossRef] [PubMed]
    [Google Scholar]
  42. Weekes M. P. , Tomasec P. , Huttlin E. L. , Fielding C. A. , Nusinow D. , Stanton R. J. , Wang E. C. , Aicheler R. , Murrell I. et al. ( 2014; ). Quantitative temporal viromics: an approach to investigate host-pathogen interaction. . Cell 157:, 1460–1472. [CrossRef] [PubMed]
    [Google Scholar]
  43. Wells R. , Stensland L. , Vieira J. . ( 2009; ). The human cytomegalovirus UL112-113 locus can activate the full Kaposi’s sarcoma-associated herpesvirus lytic replication cycle. . J Virol 83:, 4695–4699. [CrossRef] [PubMed]
    [Google Scholar]
  44. Wilk S. , Figueiredo-Pereira M. E. . ( 1993; ). Synthetic inhibitors of the multicatalytic proteinase complex (proteasome). . Enzyme Protein 47:, 306–313.[PubMed]
    [Google Scholar]
  45. Wright D. A. , Spector D. H. . ( 1989; ). Posttranscriptional regulation of a class of human cytomegalovirus phosphoproteins encoded by an early transcription unit. . J Virol 63:, 3117–3127.[PubMed]
    [Google Scholar]
  46. Zhao X. , Pike B. R. , Newcomb J. K. , Wang K. K. , Posmantur R. M. , Hayes R. L. . ( 1999; ). Maitotoxin induces calpain but not caspase-3 activation and necrotic cell death in primary septo-hippocampal cultures. . Neurochem Res 24:, 371–382. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000040
Loading
/content/journal/jgv/10.1099/vir.0.000040
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error