Journal of General Virology
- Current Issue
Volume 106, Issue 4, 2025
- Reviews
-
-
-
Emergence, migration and spreading of the high pathogenicity avian influenza virus H5NX of the Gs/Gd lineage into America
The high pathogenicity avian influenza virus H5N1, which first emerged in the winter of 2021, has resulted in multiple outbreaks across the American continent through the summer of 2023 and they continue based on early 2025 records, presenting significant challenges for global health and food security. The viruses causing the outbreaks belong to clade 2.3.4.4b, which are descendants of the lineage A/Goose/Guangdong/1/1996 (Gs/Gd) through genetic reassortments with several low pathogenicity avian influenza viruses present in populations of Anseriformes and Charadriiformes orders. This review addresses these issues by thoroughly analysing available epidemiological databases and specialized literature reviews. This project explores the mechanisms behind the resurgence of the H5N1 virus. It provides a comprehensive overview of the origin, timeline and factors contributing to its prevalence among wild bird populations on the American continent.
-
-
-
-
Recent advances in the prevention and treatment of respiratory syncytial virus disease
Respiratory syncytial virus (RSV) is associated with considerable healthcare burden; as such, prevention and treatment of RSV have long been considered a priority. Historic failures in RSV vaccine development had slowed the research field. However, the discovery of the conformational change in the RSV fusion protein (F) has led to considerable advancements in the field. The RSV pharmaceutical landscape has drastically changed in recent years with successful trials of both vaccines and second-generation mAbs leading to licensing and roll-out of these agents in several countries. RSV preventative and therapeutic measures will likely have a significant impact on RSV-related morbidity and mortality. However, there are still gaps in the protection that these immunizations offer that should be addressed. Many unanswered questions about RSV infection dynamics and subsequent disease should be a focus of ongoing research. This review discusses the currently licensed RSV pharmaceuticals and others that have recently progressed to clinical trials.
-
- Animal
-
- RNA Viruses
-
-
A region of mumps virus nucleoprotein affects defective interfering particle production
More LessMumps virus (MuV) is a negative-sense, single-stranded RNA virus belonging to the family Paramyxoviridae. MuV causes acute infection of the parotid glands, and the infection can result in severe cases of encephalitis, meningitis and deafness in humans. The non-segmented RNA genome of MuV is encapsidated by the nucleocapsid protein (NP), which forms the ribonucleoprotein (RNP) complex that serves as a template for viral RNA synthesis. To make viral genomic RNA accessible to the viral polymerase, a conformational change within NP occurs. Recently, an atomic model of the NP of MuV was developed with cryogenic-electron microscopy (cryo-EM) using PIV5 NP crystal structure as a homology template. To examine NP’s structure and function, we performed mutational analysis of MuV NP at region(s) proposed to play a role in accessing viral RNA. The MuV NP mutants containing G185P, A197Q, Q200R and groups denoted as Top (N63G, P139D, A197Q), Tip (P109E, N121G, A124R) and Bottom (G21S, E29T, P43N, R93Q, R304Q) were first tested in a minigenome system. All mutations resulted in reduced reporter gene activities with Q200R and Bottom having the most severe negative effects. Rescuing of recombinant viruses with these mutations was attempted, and only MuV mutants ‘185 (G185P)’, ‘197 (A197Q)’ and ‘Top (N63G, P139D, A197A)’ were obtained. The ‘Top’ MuV mutant exhibited normal growth kinetics at low multiplicities of infection (MOIs); however, at high MOIs, the virus had reduced peak litres than low MOIs. Further analysis indicates that production of defective interfering particles (DI particles or DIPs) was enhanced by the mutant virus, indicating that this region, a known alpha-helix hinge region, is important for full-length genome replication, suggesting that it plays a role in maintaining stability of viral RNA-dependent RNA-polymerase on RNP template during MuV viral RNA synthesis. Understanding the production of DI particles will lead to a better understanding of MuV pathogenesis, as well as its replication/transcription process.
-
-
-
Distribution of aminopeptidase N coronavirus receptors in the respiratory and digestive tracts of domestic and wild artiodactyls and carnivores
Fabian Z.X. Lean, Giulia Gallo, Joseph Newman, Stuart Ackroyd, Simon Spiro, Ruth Cox, Ingebjørg Helena Nymo, Caroline Bröjer, Aleksija Neimanis, Alejandro Suárez-Bonnet, Simon L. Priestnall, Holly Everest, Sarah Keep, Dalan Bailey, Richard J. Delahay, Amanda H. Seekings, Lorraine M. McElhinney, Sharon M. Brookes and Alejandro NúñezAminopeptidase N (APN) is a transmembrane protein that mediates the attachment of the spike protein of several clinically important coronaviruses (CoVs) responsible for respiratory and intestinal diseases in animals and humans. To assess the potential for APN-mediated viral tropism, we characterized APN receptor distribution in the respiratory and intestinal tissues of various artiodactyls (cervids, bovids, camelids and suids) and carnivores (canids, felids, mustelids and phocids) using immunohistochemistry. In the lungs, APN expression was limited to artiodactyls, with strong expression in the bronchiolar epithelium and weaker expression in pneumocytes. Nasal turbinate and tracheal samples, where available, showed stronger APN expression in artiodactyls over carnivores. APN was consistently detected on the microvilli of enterocytes in the small intestine across multiple taxa, while the presence in the colon was more variable. Of the animals examined, pig and alpaca consistently expressed the most abundant APN in the upper and lower respiratory tract. In silico evaluation of APN orthologue sequences from humans, artiodactyls and carnivores identified distinct evolutionary relationships. Further in silico binding predictions for alpaca alphacoronavirus and human coronavirus 229E with cognate and heterologous alpaca and human APN revealed substantial overlapping binding footprints with high conservation of amino acid residues, suggesting an evolutionary divergence and subsequent adaptation of a 229E-like or ancestral virus within a non-human animal host. This combined anatomical and in silico approach enhances understanding of host susceptibility, tissue tropism and viral transmission mechanisms in APN-dependent CoVs and has the potential to inform future strategies for disease modelling, surveillance and control.
-
- Retroviruses
-
-
Myosin IXB protects immune cells from virus infection
Actin-associated proteins have been implicated in several stages of virus infection. However, the role of myosins, which are actin-dependent molecular motors, during virus infection and pathogenesis is poorly understood. Myosin IXB (Myo9b) is a member of the myosin family abundantly expressed in immune cells. Myo9b displays a RhoGTPase-activating protein domain capable of modulating actin dynamics by inhibiting RhoGTPase activity. To enquire upon Myo9b participation in virus infections, we have silenced Myo9b in U937 and Jurkat cells and infected them with vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped HIV-1. Myo9b-silenced U937 showed a remarkable increase of above ten times more HIV-VSV-G infection than control cells. We observed a similar pattern in Jurkat cell infection with both WT Env and VSV-G-pseudotyped HIV, albeit to a lesser extent. Myo9b-silenced U937 cells presented elevated levels of phosphorylated cofilin, but lower levels of polymerized actin. The use of a RhoA, B and C inhibitor, as well as a Rac1 inhibitor, reduced virus infection. Finally, we have also observed an increment in virus internalization and fusion in cells knockdown for Myo9b, which may explain the increase in virus infection. Taken together, our data suggests that Myo9b might hinder viral entry and infection by controlling the activity of RhoGTPases in immune cells.
-
-
-
A high frequency of detection of koala retrovirus fragments in Victorian koalas suggests historic integration of KoRV
More LessRecombinant koala retrovirus (recKoRV) is a recently discovered variant of koala retrovirus (KoRV), which likely emerged due to recombination with another retrovirus (such as Phascolarctos endogenous retrovirus). KoRV spread and endogenization in Australia were thought to be ongoing in a north to south direction given the low prevalence of the virus in southern koala populations, based on molecular detection of the pol gene. However, recKoRV has highlighted that fragments of KoRV with the pol region missing are present within southern koalas. In this study, a new 5′-region-based KoRV PCR assay was developed, capable of detecting both intact KoRV and all known variants of recKoRV. Using this assay, 319 archived DNA samples from 287 Victorian koalas were retested to investigate KoRV endogenization. We found 98.3% (282/287) of these samples were positive for the KoRV-5′ fragment, the majority of which were KoRV-pol negative (222/287) on prior testing. Our findings demonstrate extensive KoRV integration into the Victorian koala populations, suggestive of a historic presence of KoRV in Victorian koalas. This finding makes biological sense relative to the translocation history of Victorian koalas, compared to the prior paradigm of low virus prevalence, and provides new epidemiological and practical management implications.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month Most Read RSS feed

Most cited Most Cited RSS feed
-
-
-
ICTV Virus Taxonomy Profile: Rhabdoviridae 2022
Peter J. Walker, Juliana Freitas-Astúa, Nicolas Bejerman, Kim R. Blasdell, Rachel Breyta, Ralf G. Dietzgen, Anthony R. Fooks, Hideki Kondo, Gael Kurath, Ivan V. Kuzmin, Pedro Luis Ramos-González, Mang Shi, David M. Stone, Robert B. Tesh, Noël Tordo, Nikos Vasilakis, Anna E. Whitfield and ICTV Report Consortium
-
-
- More Less