1887

Abstract

The prM glycoprotein is thought to be a chaperone for the proper folding, membrane association and assembly of the envelope protein (E) of flaviviruses. The prM-E and E proteins of the Japanese encephalitis virus (JEV) were expressed in insect cells using both the baculovirus-expression system and the transient expression method. Protein expression was analysed by Western blotting and the cytopathic effect was observed by microscopy. In the baculovirus-expression system the E protein, with or without the prM protein, induced syncytial formation in Sf9 cells. Transient expression of prM-E also induced syncytia in Sf9 cells. Immunofluorescence revealed that in presence of prM, E proteins were endoplasmic reticulum-like in distribution, while in the absence of prM, E proteins were located on the cell surface. Sucrose gradient sedimentation and Western blot analysis indicated that the E protein expressed with or without the prM protein was secreted into the culture medium in particulate form. The formation of virus-like particles (VLPs) in the medium was confirmed by electron microscopy and immunoelectron microscopy. The results suggest that the E protein of JEV in the absence of prM, retained its fusion ability, by either cell surface expression or formation of VLPs. Moreover, based on the observation that co-expression of prM-E in Sf9 cells induced considerable syncytial formation, a novel, safe and simple antiviral screening approach is proposed for studying inhibitory antibodies, peptides or small molecules targeting the JEV E protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.000052
2015-05-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/jgv/96/5/1006.html?itemId=/content/journal/jgv/10.1099/vir.0.000052&mimeType=html&fmt=ahah

References

  1. Allison S. L., Stadler K., Mandl C. W., Kunz C., Heinz F. X.. ( 1995; ). Synthesis and secretion of recombinant tick-borne encephalitis virus protein E in soluble and particulate form. . J Virol 69:, 5816–5820.[PubMed]
    [Google Scholar]
  2. Bai F., Town T., Pradhan D., Cox J., Ashish, Ledizet M., Anderson J. F., Flavell R. A., Krueger J. K. et al. ( 2007; ). Antiviral peptides targeting the west nile virus envelope protein. . J Virol 81:, 2047–2055. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barros M. C., Galasso T. G., Chaib A. J., Degallier N., Nagata T., Ribeiro B. M.. ( 2011; ). Yellow fever virus envelope protein expressed in insect cells is capable of syncytium formation in lepidopteran cells and could be used for immunodetection of YFV in human sera. . Virol J 8:, 261. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bratt M. A., Gallaher W. R.. ( 1969; ). Preliminary analysis of the requirements for fusion from within and fusion from without by Newcastle disease virus. . Proc Natl Acad Sci U S A 64:, 536–543. [CrossRef] [PubMed]
    [Google Scholar]
  5. Costin J. M., Jenwitheesuk E., Lok S. M., Hunsperger E., Conrads K. A., Fontaine K. A., Rees C. R., Rossmann M. G., Isern S. et al. ( 2010; ). Structural optimization and de novo design of dengue virus entry inhibitory peptides. . PLoS Negl Trop Dis 4:, e721. [CrossRef] [PubMed]
    [Google Scholar]
  6. Deng F., Wang R., Fang M., Jiang Y., Xu X., Wang H., Chen X., Arif B. M., Guo L. et al. ( 2007; ). Proteomics analysis of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus identified two new occlusion-derived virus-associated proteins, HA44 and HA100. . J Virol 81:, 9377–9385. [CrossRef] [PubMed]
    [Google Scholar]
  7. Erlanger T. E., Weiss S., Keiser J., Utzinger J., Wiedenmayer K.. ( 2009; ). Past, present, and future of Japanese encephalitis. . Emerg Infect Dis 15:, 1–7. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fu D. W., Zhang P. F.. ( 1996; ). Establishment and characterization of Japanese B encephalitis virus persistent infection in the Sf9 insect cell line. . Biologicals 24:, 225–233. [CrossRef] [PubMed]
    [Google Scholar]
  9. Geiss B. J., Stahla H., Hannah A. M., Gari A. M., Keenan S. M.. ( 2009; ). Focus on flaviviruses: current and future drug targets. . Future Med Chem 1:, 327–344. [CrossRef] [PubMed]
    [Google Scholar]
  10. Guirakhoo F., Heinz F. X., Mandl C. W., Holzmann H., Kunz C.. ( 1991; ). Fusion activity of flaviviruses: comparison of mature and immature (prM-containing) tick-borne encephalitis virions. . J Gen Virol 72:, 1323–1329. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hrobowski Y. M., Garry R. F., Michael S. F.. ( 2005; ). Peptide inhibitors of dengue virus and West Nile virus infectivity. . Virol J 2:, 49. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kampmann T., Yennamalli R., Campbell P., Stoermer M. J., Fairlie D. P., Kobe B., Young P. R.. ( 2009; ). In silico screening of small molecule libraries using the dengue virus envelope E protein has identified compounds with antiviral activity against multiple flaviviruses. . Antiviral Res 84:, 234–241. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kim H., Lee S. J., Park J. Y., Park Y. W., Kim H. S., Kang H. Y., Hur B. K., Ryu Y. W., Han S. I., Kim J. S.. ( 2004; ). Study on persistent infection of Japanese encephalitis virus Beijing-1 strain in serum-free Sf9 cell cultures. . J Microbiol 42:, 25–31.[PubMed]
    [Google Scholar]
  14. Kojima A., Yasuda A., Asanuma H., Ishikawa T., Takamizawa A., Yasui K., Kurata T.. ( 2003; ). Stable high-producer cell clone expressing virus-like particles of the Japanese encephalitis virus e protein for a second-generation subunit vaccine. . J Virol 77:, 8745–8755. [CrossRef] [PubMed]
    [Google Scholar]
  15. Konishi E., Mason P. W.. ( 1993; ). Proper maturation of the Japanese encephalitis virus envelope glycoprotein requires cosynthesis with the premembrane protein. . J Virol 67:, 1672–1675.[PubMed]
    [Google Scholar]
  16. Konishi E., Fujii A., Mason P. W.. ( 2001; ). Generation and characterization of a mammalian cell line continuously expressing Japanese encephalitis virus subviral particles. . J Virol 75:, 2204–2212. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lee H. J., Min K. I., Lee J., Kang S. H., Jeon W., Nam J. H., Ju Y. R., Kim Y. B.. ( 2009; ). The prM-independent packaging of pseudotyped Japanese encephalitis virus. . Virol J 6:, 115. [CrossRef] [PubMed]
    [Google Scholar]
  18. Li L., Lok S. M., Yu I. M., Zhang Y., Kuhn R. J., Chen J., Rossmann M. G.. ( 2008; ). The flavivirus precursor membrane-envelope protein complex: structure and maturation. . Science 319:, 1830–1834. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lin Y. J., Wu S. C.. ( 2005; ). Histidine at residue 99 and the transmembrane region of the precursor membrane prM protein are important for the prM-E heterodimeric complex formation of Japanese encephalitis virus. . J Virol 79:, 8535–8544. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lin Y. J., Peng J. G., Wu S. C.. ( 2010; ). Characterization of the GXXXG motif in the first transmembrane segment of Japanese encephalitis virus precursor membrane (prM) protein. . J Biomed Sci 17:, 39. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lorenz I. C., Allison S. L., Heinz F. X., Helenius A.. ( 2002; ). Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. . J Virol 76:, 5480–5491. [CrossRef] [PubMed]
    [Google Scholar]
  22. Luo S., Zhang Y., Xu X., Westenberg M., Vlak J. M., Wang H., Hu Z., Deng F.. ( 2011; ). Helicoverpa armigera nucleopolyhedrovirus occlusion-derived virus-associated protein, HA100, affects oral infectivity in vivo but not virus replication in vitro. . J Gen Virol 92:, 1324–1331. [CrossRef] [PubMed]
    [Google Scholar]
  23. Mani S., Tripathi L., Raut R., Tyagi P., Arora U., Barman T., Sood R., Galav A., Wahala W. et al. ( 2013; ). Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. . PLoS ONE 8:, e64595. [CrossRef] [PubMed]
    [Google Scholar]
  24. Markoff L., Chang A., Falgout B.. ( 1994; ). Processing of flavivirus structural glycoproteins: stable membrane insertion of premembrane requires the envelope signal peptide. . Virology 204:, 526–540. [CrossRef] [PubMed]
    [Google Scholar]
  25. Misra U. K., Kalita J.. ( 2010; ). Overview: Japanese encephalitis. . Prog Neurobiol 91:, 108–120. [CrossRef] [PubMed]
    [Google Scholar]
  26. Mukhopadhyay S., Kuhn R. J., Rossmann M. G.. ( 2005; ). A structural perspective of the flavivirus life cycle. . Nat Rev Microbiol 3:, 13–22. [CrossRef] [PubMed]
    [Google Scholar]
  27. Schalich J., Allison S. L., Stiasny K., Mandl C. W., Kunz C., Heinz F. X.. ( 1996; ). Recombinant subviral particles from tick-borne encephalitis virus are fusogenic and provide a model system for studying flavivirus envelope glycoprotein functions. . J Virol 70:, 4549–4557.[PubMed]
    [Google Scholar]
  28. Schmidt A. G., Lee K., Yang P. L., Harrison S. C.. ( 2012; ). Small-molecule inhibitors of dengue-virus entry. . PLoS Pathog 8:, e1002627. [CrossRef] [PubMed]
    [Google Scholar]
  29. Shi P. Y.. ( 2002; ). Strategies for the identification of inhibitors of West Nile virus and other flaviviruses. . Curr Opin Investig Drugs 3:, 1567–1573.[PubMed]
    [Google Scholar]
  30. Thompson B. S., Moesker B., Smit J. M., Wilschut J., Diamond M. S., Fremont D. H.. ( 2009; ). A therapeutic antibody against West Nile virus neutralizes infection by blocking fusion within endosomes. . PLoS Pathog 5:, e1000453. [CrossRef] [PubMed]
    [Google Scholar]
  31. Wang M., Tan Y., Yin F., Deng F., Vlak J. M., Hu Z., Wang H.. ( 2008; ). The F-like protein Ac23 enhances the infectivity of the budded virus of gp64-null Autographa californica multinucleocapsid nucleopolyhedrovirus pseudotyped with baculovirus envelope fusion protein F. . J Virol 82:, 9800–9804. [CrossRef] [PubMed]
    [Google Scholar]
  32. Wang M., Yin F., Shen S., Tan Y., Deng F., Vlak J. M., Hu Z., Wang H.. ( 2010; ). Partial functional rescue of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus infectivity by replacement of F protein with GP64 from Autographa californica multicapsid nucleopolyhedrovirus. . J Virol 84:, 11505–11514. [CrossRef] [PubMed]
    [Google Scholar]
  33. Yamaji H., Konishi E.. ( 2013; ). Production of Japanese encephalitis virus-like particles in insect cells. . Bioengineered 4:, 438–442. [CrossRef] [PubMed]
    [Google Scholar]
  34. Yamaji H., Segawa M., Nakamura M., Katsuda T., Kuwahara M., Konishi E.. ( 2012; ). Production of Japanese encephalitis virus-like particles using the baculovirus-insect cell system. . J Biosci Bioeng 114:, 657–662. [CrossRef] [PubMed]
    [Google Scholar]
  35. Zhang F., Ma W., Zhang L., Aasa-Chapman M., Zhang H.. ( 2007; ). Expression of particulate-form of Japanese encephalitis virus envelope protein in a stably transfected Drosophila cell line. . Virol J 4:, 17. [CrossRef] [PubMed]
    [Google Scholar]
  36. Zheng A., Umashankar M., Kielian M.. ( 2010; ). In vitro and in vivo studies identify important features of dengue virus pr-E protein interactions. . PLoS Pathog 6:, e1001157. [CrossRef] [PubMed]
    [Google Scholar]
  37. Zuidema D., Schouten A., Usmany M., Maule A. J., Belsham G. J., Roosien J., Klinge-Roode E. C., van Lent J. W., Vlak J. M.. ( 1990; ). Expression of cauliflower mosaic virus gene I in insect cells using a novel polyhedrin-based baculovirus expression vector. . J Gen Virol 71:, 2201–2209. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.000052
Loading
/content/journal/jgv/10.1099/vir.0.000052
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error