-
Volume 87,
Issue 3,
2006
Volume 87, Issue 3, 2006
- Other viruses
-
-
-
Complete nucleotide sequence and genome organization of a single-stranded RNA virus infecting the marine fungoid protist Schizochytrium sp.
More LessThe complete nucleotide sequence of the genomic RNA of a marine fungoid protist-infecting virus (Schizochytrium single-stranded RNA virus; SssRNAV) has been determined. The viral RNA is single-stranded with a positive sense and is 9018 nt in length [excluding the 3′ poly(A) tail]. It contains two long open reading frames (ORFs), which are separated by an intergenic region of 92 nt. The 5′ ORF (ORF1) is preceded by an untranslated leader sequence of 554 nt. The 3′ large ORF (ORF2) and an additional ORF (ORF3) overlap ORF2 by 431 nt and are followed by an untranslated region of 70 nt [excluding the 3′ poly(A) tail]. The deduced amino acid sequences of ORF1 and ORF2 products show similarity to non-structural and structural proteins of dicistroviruses, respectively. However, Northern blot analysis suggests that SssRNAV synthesizes subgenomic RNAs to translate ORF2 and ORF3, showing that the translation mechanism of downstream ORFs is distinct from that of dicistroviruses. Furthermore, although considerable similarities were detected by using a blast genome database search, phylogenetic analysis based on both the nucleotide and amino acid sequences of the putative RNA-dependent RNA polymerase (RdRp) and the RNA helicase suggests that SssRNAV is phylogenetically distinct from other virus families. Therefore, it is concluded that SssRNAV is not a member of any currently defined virus family and belongs to a novel, unrecognized virus group.
-
-
- Animal
-
- RNA viruses
-
-
Role of myristoylation and N-terminal basic residues in membrane association of the human immunodeficiency virus type 1 Nef protein
More LessHuman immunodeficiency virus type 1 Nef protein is N-terminally myristoylated, a modification reported to be required for the association of Nef with cytoplasmic membranes. As myristate alone is not sufficient to anchor a protein stably into a membrane, it has been suggested that N-terminal basic residues contribute to Nef membrane association via electrostatic interactions with acidic phospholipids. Here, data are presented pertaining to the role of the myristate and basic residues in Nef membrane association, subcellular localization and function. Firstly, by using a biochemical assay for membrane association it was shown that, whereas myristoylation of Nef was not essential, mutation of a cluster of four arginines between residues 17 and 22 reduced membrane association dramatically. Mutation of two lysines at residues 4 and 7 had negligible effect alone, but when combined with the arginine substitutions, abrogated membrane association completely. By using indirect immunofluorescence, it was demonstrated that mutation of either of the two basic clusters altered the subcellular distribution of Nef dramatically. Thirdly, the requirement of the arginine and lysine clusters for Nef-mediated CD4 downmodulation was shown to correlate precisely with membrane association. These data suggest that membrane localization and subcellular targeting of Nef are controlled by a complex interplay of signals at the N terminus of the protein.
-
-
-
Genetic diversity of small-ruminant lentiviruses: characterization of Norwegian isolates of Caprine arthritis encephalitis virus
More LessSmall-ruminant lentiviruses (SRLVs), including Caprine arthritis encephalitis virus (CAEV) in goats and maedi-visna virus (MVV) in sheep, are lentiviruses that, despite overall similarities, show considerable genetic variation in regions of the SRLV genome. To gain further knowledge about the genetic diversity and phylogenetic relationships among field isolates of SRLVs occurring in geographically distinct areas, the full-length genomic sequence of a CAEV isolate (CAEV-1GA) and partial env sequences obtained from Norwegian CAEV-infected goats were determined. The genome of CAEV-1GA consisted of 8919 bp. Alignment studies indicated significant diversity from published SRLV sequences. Deletions and hypervariability in the 5′ part of the env gene have implications for the size of the proposed CAEV-1GA Rev protein and the encoded surface glycoprotein (SU). The variable regions in the C-terminal part of SU obtained from Norwegian CAEV isolates demonstrate higher sequence divergence than has been described previously for SRLVs. Phylogenetic analysis based on SU sequences gives further support for a unique group designation. The results described here reveal a distant genetic relationship between Norwegian CAEV and other SRLVs and demonstrate that there is more geographical heterogeneity among SRLVs than reported previously.
-
-
-
Comparative studies on mucosal and intravenous transmission of simian immunodeficiency virus (SIVsm): evolution of coreceptor use varies with pathogenic outcome
More LessCoreceptor usage of isolates from 30 cynomolgus macaques infected intrarectally (n=22) or intravenously (n=8) with simian immunodeficiency virus of sooty mangabey origin (SIVsm) was evaluated in U87.CD4 and GHOST(3) cell lines. Based on progression rate, the animals were divided into progressors (18 animals), slow progressors (five animals) and long-term non-progressors (seven animals). There was no difference in how many or which coreceptors were used according to route of infection. All isolates but one used CCR5 for cell entry, and CCR5 was also the major coreceptor in 70 out of 105 isolates tested. In general, early isolates were multitropic, using CCR5, CXCR6 and/or gpr15. Interestingly, CXCR4-using viruses could be isolated on human peripheral blood mononuclear cells (PBMCs), but not on cynomolgus macaque PBMCs, suggesting that human PBMCs select for variants with CXCR4 use. Even though CXCR4-using SIV isolates have been reported rarely, we could recover CXCR4-using viruses from 13 monkeys. CXCR4 use either appeared early during the acute phase of infection and disappeared later or only appeared late in infection during immunodeficiency. Surprisingly, one late isolate from a progressor monkey did not use CCR5 at all and used the CXCR4 receptor with high efficiency. The ability to use many different receptors decreased over time in long-term non-progressor monkeys, whilst the majority of progressor monkeys showed broadening of coreceptor use, stable coreceptor use or fluctuation between the different coreceptor-usage patterns. The results indicate that, in the infected host, evolution of SIV coreceptor usage occurs, involving changes in the mode of coreceptor use.
-
-
-
Comparative studies on mucosal and intravenous transmission of simian immunodeficiency virus (SIVsm): the kinetics of evolution to neutralization resistance are related to progression rate of disease
More LessThe kinetics of appearance of autologous neutralizing antibodies were studied in cynomolgus macaques infected with simian immunodeficiency virus (SIVsm) by the intravenous (IV) route (six monkeys) or the intrarectal (IR) route (ten monkeys). The SIVsm inoculum virus and reisolates obtained at 2 weeks, 3 or 4 months and later than 1 year were tested in a GHOST(3) cell line-based plaque-reduction assay with autologous sera collected at the same sampling times. All monkeys developed a neutralizing-antibody response to the inoculum virus, those infected by the IV route earlier than monkeys infected by the IR route. Animals were divided into progressor (P), slow-progressor (SP) and long-term non-progressor (LTNP) monkeys, based on progression rate. In P monkeys, neutralization escape could be demonstrated by 3 months post-infection. Neutralization-resistant variants also emerged in SP and LTNP monkeys, but were much delayed compared with P monkeys. Evolution of neutralization resistance was also demonstrated by a positive-control serum in the heterologous reaction. Pooled sera from four LTNP monkeys showed a broad neutralizing capacity, including neutralization of escape variants. These results from a large group of infected monkeys showed that SIV evolves to neutralization resistance in the infected host and that the kinetics of this evolution are related to the route of transmission and the progression rate of SIV disease. The results suggest an important role for neutralizing antibodies in controlling viraemia. Although this control is transient in the infected host, neutralization resistance is relative and variant viruses may be neutralized by a broadly cross-neutralizing serum pool.
-
-
-
CCR5 use by human immunodeficiency virus type 1 is associated closely with the gp120 V3 loop N-linked glycosylation site
More LessHuman immunodeficiency virus type 1 (HIV-1) enters cells through the chemokine receptors CCR5 (R5 virus) and/or CXCR4 (X4 virus). Loss of N-linked glycans and increased net charge of the third variable loop (V3) of the gp120 envelope glycoprotein have been observed to be important steps towards CXCR4 use. All reported sequences using CCR5 or CXCR4 exclusively, or using both, were gathered from the Los Alamos HIV Database and analysed with regard to the V3 N-linked glycosylation motifs (sequons) and charge. The V3 loop glycan had a sensitivity of 0·98 and a 0·92 positive predictive value in the context of CCR5 use. The difference from X4 was remarkable (P<10−12). Especially, the sequon motif NNT within the V3 loop was conserved in 99·2 % of the major clades. The results suggest a close association between the V3 loop glycan and CCR5 use and may provide new insight into HIV-1 tropism and help to improve phenotype-prediction models.
-
-
-
The glycosylation site in the envelope protein of West Nile virus (Sarafend) plays an important role in replication and maturation processes
More LessThe complete genome of West Nile (Sarafend) virus [WN(S)V] was sequenced. Phylogenetic trees utilizing the complete genomic sequence, capsid gene, envelope gene and NS5 gene/3′ untranslated region of WN(S)V classified WN(S)V as a lineage II virus. A full-length infectious clone of WN(S)V with a point mutation in the glycosylation site of the envelope protein (pWNS-S154A) was constructed. Both growth kinetics and the mode of maturation were affected by this mutation. The titre of the pWNS-S154A virus was lower than the wild-type virus. This defect was corrected by the expression of wild-type envelope protein in trans. The pWNS-S154A virus matured intracellularly instead of at the plasma membrane as shown for the parental WN(S)V.
-
-
-
Efficient cleavage by signal peptide peptidase requires residues within the signal peptide between the core and E1 proteins of hepatitis C virus strain J1
More LessMaturation of hepatitis C virus (HCV) core protein requires cleavage by signal peptidase (SP) and signal peptide peptidase (SPP) at a signal peptide between core and the E1 glycoprotein. For HCV strain Glasgow, amino acids Ala180, Ser183 and Cys184 within the signal peptide have previously been shown to be essential for efficient SPP cleavage. By contrast, these residues apparently did not contribute to core maturation in HCV strain J1. In the present study, the source of this discrepancy has been analysed and it is concluded that interpretation of the strain J1 data was incorrect, due to the inability to separate wild-type and mutant forms of core on gels by using standard buffer systems.
-
-
-
Hepatitis C virus complete genome sequences identified from China representing subtypes 6k and 6n and a novel, as yet unassigned subtype within genotype 6
Here, the complete genome sequences for three hepatitis C virus (HCV) variants identified from China and belonging to genotype 6 are reported: km41, km42 and gz52557. Their entire genome lengths were 9430, 9441 and 9448 nt, respectively; the 5′ untranslated regions (UTRs) contained 341, 342 and 339 nt, followed by single open reading frames of 9045, 9045 and 9057 nt, respectively; the 3′ UTRs, up to the poly(U) tracts, were 41, 51 and 52 nt, respectively. Phylogenetic analyses showed that km41 is classified into subtype 6k and km42 into subtype 6n. Although gz52557 clustered distantly with subtype 6g, it appeared to belong to a distinct subtype. Analysis with 53 and 105 partial core and NS5B region sequences, respectively, representing 17 subtypes from 6a to 6q and three unassigned isolates of genotype 6 in co-analyses demonstrated that gz52557 was equidistant from all of these isolates, indicating that it belongs to a novel subtype. However, based on a recent consensus that three or more examples are required for a new HCV subtype designation, it is suggested that gz52557 remains unassigned to any subtype.
-
-
-
Tagging of NS5A expressed from a functional hepatitis C virus replicon
More LessKnowledge of how hepatitis C virus (HCV) proteins associate with components of the host cell to form a functional replication complex is still limited. To address this issue, HCV replicon constructs were generated where either green fluorescent protein (GFP) or the Propionibacterium shermanii transcarboxylase domain (PSTCD) was introduced into the NS5A coding region. Insertion of both GFP and PSTCD was tolerated well, allowing formation of stable replicon-containing cell lines that contained viral protein and transcript levels that were comparable to those of an unmodified parental replicon. Cell lines generated from the GFP-tagged NS5A replicon allowed live-cell visualization of the location of NS5A. Cell lines generated from the PSTCD-tagged replicons allowed rapid and efficient precipitation of the PSTCD-tagged NS5A, as well as other HCV non-structural proteins, using streptavidin-coated magnetic beads. Both replicons represent useful tools that offer different but complementary ways of examining replication-complex formation in cells.
-
-
-
Comparative evaluation of two severe acute respiratory syndrome (SARS) vaccine candidates in mice challenged with SARS coronavirus
Raymond H. See, Alexander N. Zakhartchouk, Martin Petric, David J. Lawrence, Catherine P. Y. Mok, Robert J. Hogan, Thomas Rowe, Lois A. Zitzow, Karuna P. Karunakaran, Mary M. Hitt, Frank L. Graham, Ludvik Prevec, James B. Mahony, Chetna Sharon, Thierry C. Auperin, James M. Rini, Aubrey J. Tingle, David W. Scheifele, Danuta M. Skowronski, David M. Patrick, Thomas G. Voss, Lorne A. Babiuk, Jack Gauldie, Rachel L. Roper, Robert C. Brunham and B. Brett FinlayTwo different severe acute respiratory syndrome (SARS) vaccine strategies were evaluated for their ability to protect against live SARS coronavirus (CoV) challenge in a murine model of infection. A whole killed (inactivated by β-propiolactone) SARS-CoV vaccine and a combination of two adenovirus-based vectors, one expressing the nucleocapsid (N) and the other expressing the spike (S) protein (collectively designated Ad S/N), were evaluated for the induction of serum neutralizing antibodies and cellular immune responses and their ability to protect against pulmonary SARS-CoV replication. The whole killed virus (WKV) vaccine given subcutaneously to 129S6/SvEv mice was more effective than the Ad S/N vaccine administered either intranasally or intramuscularly in inhibiting SARS-CoV replication in the murine respiratory tract. This protective ability of the WKV vaccine correlated with the induction of high serum neutralizing-antibody titres, but not with cellular immune responses as measured by gamma interferon secretion by mouse splenocytes. Titres of serum neutralizing antibodies induced by the Ad S/N vaccine administered intranasally or intramuscularly were significantly lower than those induced by the WKV vaccine. However, Ad S/N administered intranasally, but not intramuscularly, significantly limited SARS-CoV replication in the lungs. Among the vaccine groups, SARS-CoV-specific IgA was found only in the sera of mice immunized intranasally with Ad S/N, suggesting that mucosal immunity may play a role in protection for the intranasal Ad S/N delivery system. Finally, the sera of vaccinated mice contained antibodies to S, further suggesting a role for this protein in conferring protective immunity against SARS-CoV infection.
-
-
-
Identification of protease and ADP-ribose 1″-monophosphatase activities associated with transmissible gastroenteritis virus non-structural protein 3
More LessThe replicase polyproteins, pp1a and pp1ab, of porcine Transmissible gastroenteritis virus (TGEV) have been predicted to be cleaved by viral proteases into 16 non-structural proteins (nsp). Here, enzymic activities residing in the amino-proximal region of nsp3, the largest TGEV replicase processing product, were characterized. It was shown, by in vitro translation experiments and protein sequencing, that the papain-like protease 1, PL1pro, but not a mutant derivative containing a substitution of the presumed active-site nucleophile, Cys1093, cleaves the nsp2|nsp3 site at 879Gly|Gly880. By using an antiserum raised against the pp1a/pp1ab residues 526–713, the upstream processing product, nsp2, was identified as an 85 kDa protein in TGEV-infected cells. Furthermore, PL1pro was confirmed to be flanked at its C terminus by a domain (called X) that mediates ADP-ribose 1″-phosphatase activity. Expression and characterization of a range of bacterially expressed forms of this enzyme suggest that the active X domain comprises pp1a/pp1ab residues Asp1320–Ser1486.
-
-
-
Role of a conserved tripeptide in the endodomain of Sindbis virus glycoprotein E2 in virus assembly and function
More LessEnvelopment of Sindbis virus (SV) at the plasma membrane begins with the interaction of the E2 glycoprotein endodomain with a hydrophobic cleft in the surface of the pre-assembled nucleocapsid. The driving force for this budding event is thought to reside in this virus type-specific association at the surface of the cell. The specific amino acids involved in this interaction have not been identified; however, it has been proposed that a conserved motif (TPY) at aa 398–400 in the E2 tail plays a critical role in this interaction. This interaction has been examined with virus containing mutations at two positions in this conserved domain, T398A and Y400N. The viruses produced have very low infectivity (as determined by particle : p.f.u. ratios); however, there appears to be no defect in assembly, as the virus has wild-type density and electron microscopy shows assembled particles with no obvious aberrant structural changes. The loss of infectivity in the double mutant is accompanied by the loss of the ability to fuse cells after brief exposure to acid pH. These data support the idea that these residues are vital for production of infectious/functional virus; however, they are dispensable for assembly. These results, combined with other published observations, expand our understanding of the interaction of the E2 endodomain with the capsid protein.
-
-
-
Transcribing paramyxovirus RNA polymerase engages the template at its 3′ extremity
More LessFor the non-segmented, negative-stranded RNA viruses, the mechanism controlling transcription or replication is still a matter of debate. To gain information about this mechanism and about the nature of the RNA polymerase involved, the length of an intervening sequence separating the 3′ end of Sendai virus minigenomes and a downstream transcription-initiation signal was increased progressively. It was found that transcription, as measured by green fluorescent protein (GFP) expression, decreased progressively in proportion to the increase in length of the intervening sequence. GFP expression correlated well with the levels of GFP mRNA in the cells, as measured by quantitative primer extension and by RNase protection. Thus, mRNA transcription was inversely proportional to the length of the inserted sequence. These data are evidence that the RNA polymerase initiating transcription at the downstream transcription signal somehow sees the distance separating this signal and the template 3′ extremity. Implication of this observation for the nature of the Sendai virus RNA polymerase and for the mechanism by which it synthesizes mRNAs or replication products is presented.
-
-
-
Role of non-raft cholesterol in lymphocytic choriomeningitis virus infection via α-dystroglycan
More LessDystroglycan (DG) is an extracellular matrix receptor necessary for the development of metazoans from flies to humans and is also an entry route for various pathogens. Lymphocytic choriomeningitis virus (LCMV), a member of the family Arenaviridae, infects by binding to α-DG. Here, the role of cholesterol lipid rafts in infection by LCMV via α-DG was investigated. The cholesterol-sequestering drugs methyl-β-cyclodextrin (MβCD), filipin and nystatin inhibited the infectivity of LCMV selectively, but did not affect infection by vesicular stomatitis virus. Cholesterol loading after depletion with MβCD restored infectivity to control levels. DG was not found in lipid rafts identified with the raft marker ganglioside GM1. Treatment with MβCD, however, enhanced the solubility of DG. This may reflect the association of DG with cholesterol outside lipid rafts and suggests that association of DG with non-raft cholesterol is critical for infection by LCMV through α-DG.
-
-
-
A new promoter-binding site in the PB1 subunit of the influenza A virus polymerase
More LessThe influenza A virus RNA-dependent RNA polymerase consists of three subunits PB1, PB2 and PA. The 5′ and 3′ terminal sequences of the viral RNA (vRNA) form the viral promoter and are bound by the PB1 subunit. The putative promoter-binding sites of the PB1 subunit have been mapped in previous studies but with contradictory results. The aim of the current study was to investigate the function of two evolutionary conserved regions in PB1 – from aa 233 to 249 and 269 to 281, which lie immediately N- and C-terminal, respectively, of a previously proposed binding site for the 3′ end of the vRNA promoter. The previously proposed binding site extended from aa 249 to 256 and centred on two phenylalanine residues (F251 and F254). However, the fact that F251 is required for polymerase activity was not confirmed here. Instead, it was proposed that the 233–249 region contains a new 5′ vRNA promoter-binding site, and arginine residues crucial for this activity were characterized. However, residues 269–281 were unlikely to be directly involved in promoter binding. These results are discussed in relation to the previous studies and a new model for vRNA promoter binding to the influenza RNA polymerase is presented.
-
-
-
Structural and functional integrity of the coxsackievirus B3 oriR: spacing between coaxial RNA helices
The enterovirus oriR is composed of two helices, X and Y, anchored by a kissing (K) interaction. For proper oriR function, certain areas of these helices should be specifically oriented towards each other. It was hypothesized that the single-stranded nucleotides bridging the coaxial helices (Y–X and K–Y linkers) are important to determine this orientation. Spatial changes were introduced by altering the linker length between the helices of the coxsackievirus B3 oriR. Changing the linker lengths resulted in defective RNA replication, probably because of an altered oriR geometry. The identity of the linker residues also played a role, possibly because of sequence-specific ligand recognition. Although each point mutation altering the primary sequence of the Y–X spacer resulted in defective growth at 36 °C, the mutations had a wild-type phenotype at 39 °C, indicating a cold-sensitive phenotype. The results show that the intrinsic connection between oriR structure and function is fine-tuned by the spacing between the coaxial RNA helices.
-
-
-
Putative neutralization epitopes and broad cross-genotype neutralization of Hepatitis E virus confirmed by a quantitative cell-culture assay
Monolayers of Hep G2/C3A cells were inoculated with genotype 1 Hepatitis E virus (HEV) mixed with either anti-HEV or an appropriate control. After 5 or 6 days, cell monolayers were stained with anti-HEV and infected cells were identified by immunofluorescence microscopy and counted. Anti-HEV from vaccinated or infected rhesus monkeys neutralized the virus, as did mAbs that recognized epitopes on the C terminus of a recombinant vaccine protein. Antibodies were broadly cross-reactive, since convalescent serum from animals infected with any one of the four mammalian genotypes all neutralized the genotype 1 virus.
-
- DNA viruses
-
-
Abnormal immune response of CCR5-deficient mice to ocular infection with herpes simplex virus type 1
More LessOcular herpes simplex virus type 1 (HSV-1) infection elicits a strong inflammatory response that is associated with production of the β chemokines CCL3 and CCL5, which share a common receptor, CCR5. To gain insight into the role of these molecules in ocular immune responses, the corneas of wild-type (WT) and CCR5-deficient (CCR5−/−) mice were infected with HSV-1 and inflammatory parameters were measured. In the absence of CCR5, the early infiltration of neutrophils into the cornea was diminished. Associated with this aberrant leukocyte recruitment, neutrophils in CCR5−/− mice were restricted to the stroma, whereas in WT mice, these cells trafficked to the stroma and epithelial layers of the infected cornea. Virus titres and cytokine/chemokine levels in the infected tissue of these mice were similar for the first 5 days after infection. However, by day 7 post-infection, the CCR5−/− mice showed a significant elevation in the chemokines CCL2, CCL5, CXCL9 and CXCL10 in the trigeminal ganglion and brainstem, as well as a significant increase in virus burden. The increase in chemokine expression was associated with an increase in the infiltration of CD4 and/or CD8 T cells into the trigeminal ganglion and brainstem of CCR5−/− mice. Surprisingly, even though infected CCR5−/− mice were less efficient at controlling the progression of virus replication, there was no difference in mortality. These results suggest that, although CCR5 plays a role in regulating leukocyte trafficking and control of virus burden, compensatory mechanisms are involved in preventing mortality following HSV-1 infection.
-
-
-
Human herpesvirus 7 U47 gene products are glycoproteins expressed in virions and associate with glycoprotein H
More LessThe function of the human herpesvirus 7 (HHV-7) U47 gene, which is a positional homologue of the genes encoding glycoprotein O (gO) in human cytomegalovirus (HCMV) and human herpesvirus 6 (HHV-6), was analysed. A monoclonal antibody (mAb) against the U47 gene product reacted in immunoblots with proteins migrating at 49 and 51 kDa in lysates of HHV-7-infected cells and with 49 and 51 kDa proteins in partially purified virions. Digestion of the 49 and 51 kDa proteins with endoglycosidase H and peptide N-glycosidase F indicated that the U47-encoded proteins were modified with N-linked oligosaccharides. Therefore, the U47 gene and its product were named gO, as in HCMV and HHV-6. In addition, the anti-gO mAb co-immunoprecipitated glycoprotein H (gH) in HHV-7-infected cells, indicating an association between HHV-7 gO and gH. The results suggest that the HHV-7 gO–gH complex might have a similar function to that in HCMV or HHV-6, such as cell–cell fusion in virus infection.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month

Most cited Most Cited RSS feed
-
-
-
-
ICTV Virus Taxonomy Profile: Rhabdoviridae 2022
Peter J. Walker, Juliana Freitas-Astúa, Nicolas Bejerman, Kim R. Blasdell, Rachel Breyta, Ralf G. Dietzgen, Anthony R. Fooks, Hideki Kondo, Gael Kurath, Ivan V. Kuzmin, Pedro Luis Ramos-González, Mang Shi, David M. Stone, Robert B. Tesh, Noël Tordo, Nikos Vasilakis, Anna E. Whitfield and ICTV Report Consortium
-
- More Less