1887

Abstract

Small-ruminant lentiviruses (SRLVs), including (CAEV) in goats and maedi-visna virus (MVV) in sheep, are lentiviruses that, despite overall similarities, show considerable genetic variation in regions of the SRLV genome. To gain further knowledge about the genetic diversity and phylogenetic relationships among field isolates of SRLVs occurring in geographically distinct areas, the full-length genomic sequence of a CAEV isolate (CAEV-1GA) and partial sequences obtained from Norwegian CAEV-infected goats were determined. The genome of CAEV-1GA consisted of 8919 bp. Alignment studies indicated significant diversity from published SRLV sequences. Deletions and hypervariability in the 5′ part of the gene have implications for the size of the proposed CAEV-1GA Rev protein and the encoded surface glycoprotein (SU). The variable regions in the C-terminal part of SU obtained from Norwegian CAEV isolates demonstrate higher sequence divergence than has been described previously for SRLVs. Phylogenetic analysis based on sequences gives further support for a unique group designation. The results described here reveal a distant genetic relationship between Norwegian CAEV and other SRLVs and demonstrate that there is more geographical heterogeneity among SRLVs than reported previously.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81201-0
2006-03-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/3/573.html?itemId=/content/journal/jgv/10.1099/vir.0.81201-0&mimeType=html&fmt=ahah

References

  1. Abelson, M. L. & Schoborg, R. V. ( 2003; ). Characterization of the caprine arthritis encephalitis virus (CAEV) rev N-terminal elements required for efficient interaction with the RRE. Virus Res 92, 23–35.[CrossRef]
    [Google Scholar]
  2. Andresson, Ó. S., Elser, J. E., Tobin, G. J. & 11 other authors ( 1993; ). Nucleotide sequence and biological properties of a pathogenic proviral molecular clone of neurovirulent visna virus. Virology 193, 89–105.[CrossRef]
    [Google Scholar]
  3. Barros, S. C., Ramos, F., Duarte, M., Fagulha, T., Cruz, B. & Fevereiro, M. ( 2004; ). Genomic characterization of a slow/low maedi visna virus. Virus Genes 29, 199–210.[CrossRef]
    [Google Scholar]
  4. Bertoni, G., Hertig, C., Zahno, M.-L. & 7 other authors ( 2000; ). B-cell epitopes of the envelope glycoprotein of caprine arthritis–encephalitis virus and antibody response in infected goats. J Gen Virol 81, 2929–2940.
    [Google Scholar]
  5. Blacklaws, B. A., Berriatua, E., Torsteinsdottir, S., Watt, N. J., de Andres, D., Klein, D. & Harkiss, G. D. ( 2004; ). Transmission of small ruminant lentiviruses. Vet Microbiol 101, 199–208.[CrossRef]
    [Google Scholar]
  6. Castro, R. S., Greenland, T., Leite, R. C., Gouveia, A., Mornex, J.-F. & Cordier, G. ( 1999; ). Conserved sequence motifs involving the tat reading frame of Brazilian caprine lentiviruses indicate affiliations to both caprine arthritis–encephalitis virus and visna–maedi virus. J Gen Virol 80, 1583–1589.
    [Google Scholar]
  7. Cullen, B. R. ( 1998; ). Retroviruses as model systems for the study of nuclear RNA export pathways. Virology 249, 203–210.[CrossRef]
    [Google Scholar]
  8. Gazit, A., Mashiah, P., Kalinski, H., Gast, A., Rosin-Abersfeld, R., Tronick, S. R. & Yaniv, A. ( 1996; ). Two species of Rev proteins, with distinct N termini, are expressed by caprine arthritis encephalitis virus. J Virol 70, 2674–2677.
    [Google Scholar]
  9. Grego, E., Profiti, M., Giammarioli, M., Giannino, L., Rutili, D., Woodall, C. & Rosati, S. ( 2002; ). Genetic heterogeneity of small ruminant lentiviruses involves immunodominant epitope of capsid antigen and affects sensitivity of single-strain-based immunoassay. Clin Diagn Lab Immunol 9, 828–832.
    [Google Scholar]
  10. Hötzel, I. & Cheevers, W. P. ( 2000; ). Sequence similarity between the envelope surface unit (SU) glycoproteins of primate and small ruminant lentiviruses. Virus Res 69, 47–54.[CrossRef]
    [Google Scholar]
  11. Hötzel, I. & Cheevers, W. P. ( 2003; ). Caprine arthritis-encephalitis virus envelope surface glycoprotein regions interacting with the transmembrane glycoprotein: structural and functional parallels with human immunodeficiency virus type 1 gp120. J Virol 77, 11578–11587.[CrossRef]
    [Google Scholar]
  12. Hötzel, I., Kumpula-McWhirter, N. & Cheevers, W. P. ( 2002; ). Rapid evolution of two discrete regions of the caprine arthritis-encephalitis virus envelope surface glycoprotein during persistent infection. Virus Res 84, 17–25.[CrossRef]
    [Google Scholar]
  13. Karr, B. M., Chebloune, Y., Leung, K. & Narayan, O. ( 1996; ). Genetic characterization of two phenotypically distinct North American ovine lentiviruses and their possible origin from caprine arthritis-encephalitis virus. Virology 225, 1–10.[CrossRef]
    [Google Scholar]
  14. Knowles, D. P., Jr, Cheevers, W. P., McGuire, T. C., Brassfield, A. L., Harwood, W. G. & Stem, T. A. ( 1991; ). Structure and genetic variability of envelope glycoproteins of two antigenic variants of caprine arthritis-encephalitis lentivirus. J Virol 65, 5744–5750.
    [Google Scholar]
  15. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). mega2: molecular evolutionary genetic analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  16. Leroux, C., Chastang, J., Greenland, T. & Mornex, J. F. ( 1997; ). Genomic heterogeneity of small ruminant lentiviruses: existence of heterogeneous populations in sheep and of the same lentiviral genotypes in sheep and goats. Arch Virol 142, 1125–1137.[CrossRef]
    [Google Scholar]
  17. Lole, K. S., Bollinger, R. C., Paranjape, R. S., Gadkari, D., Kulkarni, S. S., Novak, N. G., Ingersoll, R., Sheppard, H. W. & Ray, S. C. ( 1999; ). Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73, 152–160.
    [Google Scholar]
  18. Malim, M. H. & Cullen, B. R. ( 1991; ). HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency. Cell 65, 241–248.[CrossRef]
    [Google Scholar]
  19. Malim, M. H., Hauber, J., Le, S.-Y., Maizel, J. V. & Cullen, B. R. ( 1989; ). The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338, 254–257.[CrossRef]
    [Google Scholar]
  20. Narayan, O., Zink, M. C., Gorrell, M., Crane, S., Huso, D., Jolly, P., Saltarelli, M., Adams, R. & Clements, J. E. ( 1993; ). The lentiviruses of sheep and goats. In The Retroviridae, vol. 2, pp. 229–256. Edited by J. A. Levy. New York: Plenum.
  21. Nielsen, H., Engelbrecht, J., Brunak, S. & von Heijne, G. ( 1997; ). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10, 1–6.[CrossRef]
    [Google Scholar]
  22. Nord, K., Rimstad, E., Storset, A. K. & Løken, T. ( 1998; ). Prevalence of antibodies against caprine arthritis-encephalitis virus in goat herds in Norway. Small Rumin Res 28, 115–121.[CrossRef]
    [Google Scholar]
  23. Page, R. D. M. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  24. Pancino, G., Ellerbrok, H., Sitbon, M. & Sonigo, P. ( 1994; ). Conserved framework of envelope glycoproteins among lentiviruses. Curr Top Microbiol Immunol 188, 77–105.
    [Google Scholar]
  25. Peterhans, E., Greenland, T., Badiola, J. & 14 other authors ( 2004; ). Routes of transmission and consequences of small ruminant lentiviruses (SRLVs) infection and eradication schemes. Vet Res 35, 257–274.[CrossRef]
    [Google Scholar]
  26. Pyper, J. M., Clements, J. E., Molineaux, S. M. & Narayan, O. ( 1984; ). Genetic variation among lentiviruses: homology between visna virus and caprine arthritis-encephalitis virus is confined to the 5′ gag-pol region and a small portion of the env gene. J Virol 51, 713–721.
    [Google Scholar]
  27. Pyper, J. M., Clements, J. E., Gonda, M. A. & Narayan, O. ( 1986; ). Sequence homology between cloned caprine arthritis encephalitis virus and visna virus, two neurotropic lentiviruses. J Virol 58, 665–670.
    [Google Scholar]
  28. Querat, G., Audoly, G., Sonigo, P. & Vigne, R. ( 1990; ). Nucleotide sequence analysis of SA-OMVV, a visna-related ovine lentivirus: phylogenetic history of lentiviruses. Virology 175, 434–447.[CrossRef]
    [Google Scholar]
  29. Rimstad, E., East, N. E., Torten, M., Higgins, J., DeRock, E. & Pedersen, N. C. ( 1993; ). Delayed seroconversion following naturally acquired caprine arthritis-encephalitis virus infection in goats. Am J Vet Res 54, 1858–1862.
    [Google Scholar]
  30. Rolland, M., Mooney, J., Valas, S., Perrin, G. & Mamoun, R. Z. ( 2002; ). Characterisation of an Irish caprine lentivirus strain – SRLV phylogeny revisited. Virus Res 85, 29–39.[CrossRef]
    [Google Scholar]
  31. Saltarelli, M., Querat, G., Konings, D. A. M., Vigne, R. & Clements, J. E. ( 1990; ). Nucleotide sequence and transcriptional analysis of molecular clones of CAEV which generate infectious virus. Virology 179, 347–364.[CrossRef]
    [Google Scholar]
  32. Saltarelli, M. J., Schoborg, R., Pavlakis, G. N. & Clements, J. E. ( 1994; ). Identification of the caprine arthritis encephalitis virus Rev protein and its cis-acting Rev-responsive element. Virology 199, 47–55.[CrossRef]
    [Google Scholar]
  33. Sargan, D. R., Bennet, I. D., Cousens, C., Roy, D. J., Blacklaws, B. A., Dalziel, R. G., Watt, N. J. & McConnell, I. ( 1991; ). Nucleotide sequence of EV1, a British isolate of maedi–visna virus. J Gen Virol 72, 1893–1903.[CrossRef]
    [Google Scholar]
  34. Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. ( 2002; ). tree-puzzle: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502–504.[CrossRef]
    [Google Scholar]
  35. Schoborg, R. V. & Clements, J. E. ( 1996; ). Definition of the RRE binding and activation domains of the caprine arthritis encephalitis virus Rev protein. Virology 226, 113–121.[CrossRef]
    [Google Scholar]
  36. Shah, C., Böni, J., Huder, J. B., Vogt, H.-R., Mühlherr, J., Zanoni, R., Miserez, R., Lutz, H. & Schüpbach, J. ( 2004; ). Phylogenetic analysis and reclassification of caprine and ovine lentiviruses based on 104 new isolates: evidence for regular sheep-to-goat transmission and worldwide propagation through livestock trade. Virology 319, 12–26.[CrossRef]
    [Google Scholar]
  37. Skraban, R., Matthíasdóttir, S., Torsteinsdóttir, S. & 8 other authors ( 1999; ). Naturally occurring mutations within 39 amino acids in the envelope glycoprotein of maedi-visna virus alter the neutralization phenotype. J Virol 73, 8064–8072.
    [Google Scholar]
  38. Sonigo, P., Alizon, M., Staskus, K. & 7 other authors ( 1985; ). Nucleotide sequence of the visna lentivirus: relationship to the AIDS virus. Cell 42, 369–382.[CrossRef]
    [Google Scholar]
  39. Valas, S., Benoit, C., Guionaud, C., Perrin, G. & Mamoun, R. Z. ( 1997; ). North American and French caprine arthritis-encephalitis viruses emerge from ovine maedi-visna viruses. Virology 237, 307–318.[CrossRef]
    [Google Scholar]
  40. Valas, S., Benoit, C., Baudry, C., Perrin, G. & Mamoun, R. Z. ( 2000; ). Variability and immunogenicity of caprine arthritis-encephalitis virus surface glycoprotein. J Virol 74, 6178–6185.[CrossRef]
    [Google Scholar]
  41. Wain-Hobson, S. ( 1996; ). Running the gamut of retroviral variation. Trends Microbiol 4, 135–141.[CrossRef]
    [Google Scholar]
  42. Zanoni, R. G. ( 1998; ). Phylogenetic analysis of small ruminant lentiviruses. J Gen Virol 79, 1951–1961.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81201-0
Loading
/content/journal/jgv/10.1099/vir.0.81201-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error