1887

Abstract

Ocular herpes simplex virus type 1 (HSV-1) infection elicits a strong inflammatory response that is associated with production of the chemokines CCL3 and CCL5, which share a common receptor, CCR5. To gain insight into the role of these molecules in ocular immune responses, the corneas of wild-type (WT) and CCR5-deficient (CCR5−/−) mice were infected with HSV-1 and inflammatory parameters were measured. In the absence of CCR5, the early infiltration of neutrophils into the cornea was diminished. Associated with this aberrant leukocyte recruitment, neutrophils in CCR5−/− mice were restricted to the stroma, whereas in WT mice, these cells trafficked to the stroma and epithelial layers of the infected cornea. Virus titres and cytokine/chemokine levels in the infected tissue of these mice were similar for the first 5 days after infection. However, by day 7 post-infection, the CCR5−/− mice showed a significant elevation in the chemokines CCL2, CCL5, CXCL9 and CXCL10 in the trigeminal ganglion and brainstem, as well as a significant increase in virus burden. The increase in chemokine expression was associated with an increase in the infiltration of CD4 and/or CD8 T cells into the trigeminal ganglion and brainstem of CCR5−/− mice. Surprisingly, even though infected CCR5−/− mice were less efficient at controlling the progression of virus replication, there was no difference in mortality. These results suggest that, although CCR5 plays a role in regulating leukocyte trafficking and control of virus burden, compensatory mechanisms are involved in preventing mortality following HSV-1 infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81339-0
2006-03-01
2020-10-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/3/489.html?itemId=/content/journal/jgv/10.1099/vir.0.81339-0&mimeType=html&fmt=ahah

References

  1. Algood H. M. S., Flynn J. L. 2004; CCR5-deficient mice control Mycobacterium tuberculosis infection despite increased pulmonary lymphocytic infiltration. J Immunol 173:3287–3296 [CrossRef]
    [Google Scholar]
  2. Appay V., Rowland-Jones S. L. 2001; RANTES: a versatile and controversial chemokine. Trends Immunol 22:83–87 [CrossRef]
    [Google Scholar]
  3. Banerjee K., Biswas P. S., Kim B., Lee S., Rouse B. T. 2004; CXCR2−/− mice show enhanced susceptibility to herpetic stromal keratitis: a role for IL-6-induced neovascularization. J Immunol 172:1237–1245 [CrossRef]
    [Google Scholar]
  4. Belnoue E., Kayibanda M., Deschemin J. C., Viguier M., Mack M., Kuziel W. A., Renia L. 2003; CCR5 deficiency decreases susceptibility to experimental cerebral malaria. Blood 101:4253–4259 [CrossRef]
    [Google Scholar]
  5. Biswas P. S., Banerjee K., Kim B., Rouse B. T. 2004; Mice transgenic for IL-1 receptor antagonist protein are resistant to herpetic stromal keratitis: possible role for IL-1 in herpetic stromal keratitis pathogenesis. J Immunol 172:3736–3744 [CrossRef]
    [Google Scholar]
  6. Buch S., Sui Y., Dhillon N. & 11 other authors 2004; Investigations on four host response factors whose expression is enhanced in X4 SHIV encephalitis. J Neuroimmunol 157:71–80 [CrossRef]
    [Google Scholar]
  7. Carr D. J. J., Chodosh J., Ash J., Lane T. E. 2003; Effect of anti-CXCL10 monoclonal antibody on herpes simplex virus type 1 keratitis and retinal infection. J Virol 77:10037–10046 [CrossRef]
    [Google Scholar]
  8. Dawson T. C., Beck M. A., Kuziel W. A., Henderson F., Maeda N. 2000; Contrasting effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory response to influenza A virus. Am J Pathol 156:1951–1959 [CrossRef]
    [Google Scholar]
  9. De Lemos C., Christensen J. E., Nansen A., Moos T., Lu B., Gerard C., Christensen J. P., Thomsen A. R. 2005; Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice. J Immunol 175:1767–1775 [CrossRef]
    [Google Scholar]
  10. Gasperini S., Marchi M., Calzetti F. & 7 other authors 1999; Gene expression and production of the monokine induced by IFN- γ (MIG), IFN-inducible T cell α chemoattractant (I-TAC), and IFN- γ -inducible protein-10 (IP-10) chemokines by human neutrophils. J Immunol 162:4928–4937
    [Google Scholar]
  11. Ghiasi H., Cai S., Perng G.-C., Nesburn A. B., Wechsler S. L. 2000; Both CD4+ and CD8+ T cells are involved in protection against HSV-1 induced corneal scarring. Br J Ophthalmol 84:408–412 [CrossRef]
    [Google Scholar]
  12. Glass W. G., Lane T. E. 2003; Functional expression of chemokine receptor CCR5 on CD4+ T cells during virus-induced central nervous system disease. J Virol 77:191–198 [CrossRef]
    [Google Scholar]
  13. Glass W. G., Hickey M. J., Hardison J. L., Liu M. T., Manning J. E., Lane T. E. 2004; Antibody targeting of the CC chemokine ligand 5 results in diminished leukocyte infiltration into the central nervous system and reduced neurologic disease in a viral model of multiple sclerosis. J Immunol 172:4018–4025 [CrossRef]
    [Google Scholar]
  14. Harland J., Brown S. M. 1998; HSV growth, preparation, and assay. In Methods in Molecular Medicine – Herpes Simplex Virus Protocols pp  1–8 Edited by Brown S. M., MacLean A. R. Totowa, NJ: Humana Press;
    [Google Scholar]
  15. He J., Ichimura H., Iida T. & 7 other authors 1999; Kinetics of cytokine production in the cornea and trigeminal ganglion of C57BL/6 mice after corneal HSV-1 infection. J Interferon Cytokine Res 19:609–615 [CrossRef]
    [Google Scholar]
  16. Huang D., Tani M., Wang J. & 7 other authors 2002; Pertussis toxin-induced reversible encephalopathy dependent on monocyte chemoattractant protein-1 overexpression in mice. J Neurosci 15:10633–10642
    [Google Scholar]
  17. Huffnagle G. B., McNeil L. K., McDonald R. A., Murphy J. W., Toews G. B., Maeda N., Kuziel W. A. 1999; Cutting edge: role of C-C chemokine receptor 5 in organ-specific and innate immunity to Cryptococcus neoformans . J Immunol 163:4642–4646
    [Google Scholar]
  18. Kalehua A. N., Nagel J. E., Whelchel L. M., Gides J. J., Pyle R. S., Smith R. J., Kusiak J. W., Taub D. D. 2004; Monocyte chemoattractant protein-1 and macrophage inflammatory protein-2 are involved in both excitotoxin-induced neurodegeneration and regeneration. Exp Cell Res 297:197–211 [CrossRef]
    [Google Scholar]
  19. Kurt-Jones E. A., Chan M., Zhou S., Wang J., Reed G., Bronson R., Arnold M. M., Knipe D. M., Finberg R. W. 2004; Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A 101:1315–1320 [CrossRef]
    [Google Scholar]
  20. Kuziel W. A., Dawson T. C., Quinones M., Garavito E., Chenaux G., Ahuja S. S., Reddick R. L., Maeda N. 2003; CCR5 deficiency is not protective in the early stages of atherogenesis in apoE knockout mice. Atherosclerosis 167:25–32 [CrossRef]
    [Google Scholar]
  21. Lane T. E., Liu M. T., Chen B. P. & 7 other authors 2000; A central role for CD4+ T cells and RANTES in virus-induced central nervous system inflammation and demyelination. J Virol 74:1415–1424 [CrossRef]
    [Google Scholar]
  22. Laudanna C., Kim J. Y., Constantin G., Butcher E. 2002; Rapid leukocyte integrin activation by chemokines. Immunol Rev 186:37–46 [CrossRef]
    [Google Scholar]
  23. Lee S., Zheng M., Kim B., Rouse B. T. 2002; Role of matrix metalloproteinase-9 in angiogenesis caused by ocular infection with herpes simplex virus. J Clin Invest 110:1105–1111 [CrossRef]
    [Google Scholar]
  24. Liu T., Tang Q., Hendricks R. L. 1996; Inflammatory infiltration of the trigeminal ganglion after herpes simplex virus type 1 corneal infection. J Virol 70:264–271
    [Google Scholar]
  25. Lundberg P., Welander P., Han X., Cantin E. 2003; Herpes simplex virus type 1 DNA is immunostimulatory in vitro and in vivo. J Virol 77:11158–11169 [CrossRef]
    [Google Scholar]
  26. Luster A. D. 1998; Chemokines – chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445 [CrossRef]
    [Google Scholar]
  27. Mack M., Cihak J., Simonis C. & 10 other authors 2001; Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice. J Immunol 166:4697–4704 [CrossRef]
    [Google Scholar]
  28. Melchjorsen J., Pedersen F. S., Mogensen S. C., Paludan S. R. 2002; Herpes simplex virus selectively induces expression of the CC chemokine RANTES/CCL5 in macrophages through a mechanism dependent on PKR and IP10. J Virol 76:2780–2788 [CrossRef]
    [Google Scholar]
  29. Roberts E. S., Burudi E. M., Flynn C., Madden L. J., Roinick K. L., Watry D. D., Zandonatti M. A., Taffe M. A., Fox H. S. 2004; Acute SIV infection of the brain leads to upregulation of IL6 and interferon-regulated genes: expression patterns throughout disease progression and impact on neuroAIDS. J Neuroimmunol 157:81–92 [CrossRef]
    [Google Scholar]
  30. Rollins B. J. 1997; Chemokines. Blood 90:909–928
    [Google Scholar]
  31. Shimeld C., Whiteland J. L., Nicholls S. M., Grinfeld E., Easty D. L., Gao H., Hill T. J. 1995; Immune cell infiltration and persistence in the mouse trigeminal ganglion after infection of the cornea with herpes simplex virus type 1. J Neuroimmunol 61:7–16 [CrossRef]
    [Google Scholar]
  32. Su Y.-H., Yan X.-T., Oakes J. E., Lausch R. N. 1996; Protective antibody therapy is associated with reduced chemokine transcripts in herpes simplex virus type 1 corneal infection. J Virol 70:1277–1281
    [Google Scholar]
  33. Tang Q., Hendricks R. L. 1996; Interferon γ regulates platelet endothelial cell adhesion molecule 1 expression and neutrophil infiltration into herpes simplex virus-infected mouse corneas. J Exp Med 184:1435–1447 [CrossRef]
    [Google Scholar]
  34. Thomas J., Gangappa S., Kanangat S., Rouse B. T. 1997; On the essential involvement of neutrophils in the immunopathologic disease: herpetic stromal keratitis. J Immunol 158:1383–1391
    [Google Scholar]
  35. Tumpey T. M., Chen S. H., Oakes J. E., Lausch R. N. 1996; Neutrophil-mediated suppression of virus replication after herpes simplex virus type 1 infection of the murine cornea. J Virol 70:898–904
    [Google Scholar]
  36. Tumpey T. M., Cheng H., Cook D. N., Smithies O., Oakes J. E., Lausch R. N. 1998a; Absence of macrophage inflammatory protein-1 α prevents the development of blinding herpes stromal keratitis. J Virol 72:3705–3710
    [Google Scholar]
  37. Tumpey T. M., Cheng H., Yan X.-T., Oakes J. E., Lausch R. N. 1998b; Chemokine synthesis in the HSV-1-infected cornea and its suppression by interleukin-10. J Leukoc Biol 63:486–492
    [Google Scholar]
  38. Wickham S., Ash J., Lane T. E., Carr D. J. J. 2004; Consequences of CXCL10 and IL-6 induction by the murine IFN- α 1 transgene in ocular herpes simplex virus type 1 infection. Immunol Res 30:191–200 [CrossRef]
    [Google Scholar]
  39. Wolpe S. D., Davatelis G., Sherry B. & 7 other authors 1988; Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med 167:570–581 [CrossRef]
    [Google Scholar]
  40. Zheng M., Deshpande S., Lee S., Ferrara N., Rouse B. T. 2001; Contribution of vascular endothelial growth factor in the neovascularization process during the pathogenesis of herpetic stromal keratitis. J Virol 75:9828–9835 [CrossRef]
    [Google Scholar]
  41. Zheng M., Klinman D. M., Gierynska M., Rouse B. T. 2002; DNA containing CpG motifs induces angiogenesis. Proc Natl Acad Sci U S A 99:8944–8949 [CrossRef]
    [Google Scholar]
  42. Zlotnik A., Yoshie O. 2000; Chemokines: a new classification system and their role in immunity. Immunity 12:121–127 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81339-0
Loading
/content/journal/jgv/10.1099/vir.0.81339-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error