1887

Abstract

The replicase polyproteins, pp1a and pp1ab, of porcine (TGEV) have been predicted to be cleaved by viral proteases into 16 non-structural proteins (nsp). Here, enzymic activities residing in the amino-proximal region of nsp3, the largest TGEV replicase processing product, were characterized. It was shown, by translation experiments and protein sequencing, that the papain-like protease 1, PL1, but not a mutant derivative containing a substitution of the presumed active-site nucleophile, Cys, cleaves the nsp2|nsp3 site at Gly|Gly. By using an antiserum raised against the pp1a/pp1ab residues 526–713, the upstream processing product, nsp2, was identified as an 85 kDa protein in TGEV-infected cells. Furthermore, PL1 was confirmed to be flanked at its C terminus by a domain (called X) that mediates ADP-ribose 1″-phosphatase activity. Expression and characterization of a range of bacterially expressed forms of this enzyme suggest that the active X domain comprises pp1a/pp1ab residues Asp–Ser.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81596-0
2006-03-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/3/651.html?itemId=/content/journal/jgv/10.1099/vir.0.81596-0&mimeType=html&fmt=ahah

References

  1. Almazán, F., Galán, C. & Enjuanes, L. ( 2004; ). The nucleoprotein is required for efficient coronavirus genome replication. J Virol 78, 12683–12688.[CrossRef]
    [Google Scholar]
  2. Anand, K., Palm, G. J., Mesters, J. R., Siddell, S. G., Ziebuhr, J. & Hilgenfeld, R. ( 2002; ). Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain. EMBO J 21, 3213–3224.[CrossRef]
    [Google Scholar]
  3. Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R. & Hilgenfeld, R. ( 2003; ). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300, 1763–1767.[CrossRef]
    [Google Scholar]
  4. Bhardwaj, K., Guarino, L. & Kao, C. C. ( 2004; ). The severe acute respiratory syndrome coronavirus Nsp15 protein is an endoribonuclease that prefers manganese as a cofactor. J Virol 78, 12218–12224.[CrossRef]
    [Google Scholar]
  5. Bonilla, P. J., Hughes, S. A. & Weiss, S. R. ( 1997; ). Characterization of a second cleavage site and demonstration of activity in trans by the papain-like proteinase of the murine coronavirus mouse hepatitis virus strain A59. J Virol 71, 900–909.
    [Google Scholar]
  6. Brierley, I., Boursnell, M. E. G., Binns, M. M., Bilimoria, B., Blok, V. C., Brown, T. D. K. & Inglis, S. C. ( 1987; ). An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J 6, 3779–3785.
    [Google Scholar]
  7. Dong, S. & Baker, S. C. ( 1994; ). Determinants of the p28 cleavage site recognized by the first papain-like cysteine proteinase of murine coronavirus. Virology 204, 541–549.[CrossRef]
    [Google Scholar]
  8. Draker, R., Roper, R. L., Petric, M. & Tellier, R. ( 2006; ). The complete sequence of the bovine torovirus genome. Virus Res 115, 56–68.[CrossRef]
    [Google Scholar]
  9. Eleouet, J.-F., Rasschaert, D., Lambert, P., Levy, L., Vende, P. & Laude, H. ( 1995; ). Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology 206, 817–822.[CrossRef]
    [Google Scholar]
  10. Genschik, P., Hall, J. & Filipowicz, W. ( 1997; ). Cloning and characterization of the Arabidopsis cyclic phosphodiesterase which hydrolyzes ADP-ribose 1″,2″-cyclic phosphate and nucleoside 2′,3′-cyclic phosphates. J Biol Chem 272, 13211–13219.[CrossRef]
    [Google Scholar]
  11. González, J. M., Gomez-Puertas, P., Cavanagh, D., Gorbalenya, A. E. & Enjuanes, L. ( 2003; ). A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Arch Virol 148, 2207–2235.[CrossRef]
    [Google Scholar]
  12. Gorbalenya, A. E., Koonin, E. V., Donchenko, A. P. & Blinov, V. M. ( 1989; ). Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis. Nucleic Acids Res 17, 4847–4861.[CrossRef]
    [Google Scholar]
  13. Gorbalenya, A. E., Koonin, E. V. & Lai, M. M. C. ( 1991; ). Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, α- and coronaviruses. FEBS Lett 288, 201–205.[CrossRef]
    [Google Scholar]
  14. Harcourt, B. H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K. M., Smith, C. M., Rota, P. A. & Baker, S. C. ( 2004; ). Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol 78, 13600–13612.[CrossRef]
    [Google Scholar]
  15. Hegyi, A. & Ziebuhr, J. ( 2002; ). Conservation of substrate specificities among coronavirus main proteases. J Gen Virol 83, 595–599.
    [Google Scholar]
  16. Herold, J., Gorbalenya, A. E., Thiel, V., Schelle, B. & Siddell, S. G. ( 1998; ). Proteolytic processing at the amino terminus of human coronavirus 229E gene 1-encoded polyproteins: identification of a papain-like proteinase and its substrate. J Virol 72, 910–918.
    [Google Scholar]
  17. Herold, J., Siddell, S. G. & Gorbalenya, A. E. ( 1999; ). A human RNA viral cysteine proteinase that depends upon a unique Zn2+-binding finger connecting the two domains of a papain-like fold. J Biol Chem 274, 14918–14925.[CrossRef]
    [Google Scholar]
  18. Ivanov, K. A. & Ziebuhr, J. ( 2004; ). Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities. J Virol 78, 7833–7838.[CrossRef]
    [Google Scholar]
  19. Ivanov, K. A., Hertzig, T., Rozanov, M., Bayer, S., Thiel, V., Gorbalenya, A. E. & Ziebuhr, J. ( 2004a; ). Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc Natl Acad Sci U S A 101, 12694–12699.[CrossRef]
    [Google Scholar]
  20. Ivanov, K. A., Thiel, V., Dobbe, J. C., van der Meer, Y., Snijder, E. J. & Ziebuhr, J. ( 2004b; ). Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 78, 5619–5632.[CrossRef]
    [Google Scholar]
  21. Kanjanahaluethai, A. & Baker, S. C. ( 2000; ). Identification of mouse hepatitis virus papain-like proteinase 2 activity. J Virol 74, 7911–7921.[CrossRef]
    [Google Scholar]
  22. Karras, G. I., Kustatscher, G., Buhecha, H. R., Allen, M. D., Pugieux, C., Sait, F., Bycroft, M. & Ladurner, A. G. ( 2005; ). The macro domain is an ADP-ribose binding module. EMBO J 24, 1911–1920.[CrossRef]
    [Google Scholar]
  23. Lim, K. P. & Liu, D. X. ( 1998; ). Characterization of the two overlapping papain-like proteinase domains encoded in gene 1 of the coronavirus infectious bronchitis virus and determination of the C-terminal cleavage site of an 87-kDa protein. Virology 245, 303–312.[CrossRef]
    [Google Scholar]
  24. Lim, K. P., Ng, L. F. P. & Liu, D. X. ( 2000; ). Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus Avian infectious bronchitis virus and characterization of the cleavage products. J Virol 74, 1674–1685.[CrossRef]
    [Google Scholar]
  25. Lu, Y., Lu, X. & Denison, M. R. ( 1995; ). Identification and characterization of a serine-like proteinase of the murine coronavirus MHV-A59. J Virol 69, 3554–3559.
    [Google Scholar]
  26. Putics, Á., Filipowicz, W., Hall, J., Gorbalenya, A. E. & Ziebuhr, J. ( 2005; ). ADP-ribose-1″-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J Virol 79, 12721–12731.[CrossRef]
    [Google Scholar]
  27. Sawicki, S. G. & Sawicki, D. L. ( 1995; ). Coronaviruses use discontinuous extension for synthesis of subgenome-length negative strands. Adv Exp Med Biol 380, 499–506.
    [Google Scholar]
  28. Sawicki, S. G. & Sawicki, D. L. ( 1998; ). A new model for coronavirus transcription. Adv Exp Med Biol 440, 215–219.
    [Google Scholar]
  29. Schelle, B., Karl, N., Ludewig, B., Siddell, S. G. & Thiel, V. ( 2005; ). Selective replication of coronavirus genomes that express nucleocapsid protein. J Virol 79, 6620–6630.[CrossRef]
    [Google Scholar]
  30. Seybert, A., Hegyi, A., Siddell, S. G. & Ziebuhr, J. ( 2000; ). The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5′-to-3′ polarity. RNA 6, 1056–1068.[CrossRef]
    [Google Scholar]
  31. Shi, S. T. & Lai, M. M. C. ( 2005; ). Viral and cellular proteins involved in coronavirus replication. Curr Top Microbiol Immunol 287, 95–131.
    [Google Scholar]
  32. Siddell, S. G., Ziebuhr, J. & Snijder, E. J. ( 2005; ). Coronaviruses, toroviruses, and arteriviruses. In Topley and Wilson's Microbiology and Microbial Infections, 10th edn, pp. 823–856. Edited by B. W. J. Mahy & V. ter Meulen. London: Hodder Arnold.
  33. Snijder, E. J., Bredenbeek, P. J., Dobbe, J. C. & 7 other authors ( 2003; ). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 331, 991–1004.[CrossRef]
    [Google Scholar]
  34. Thiel, V., Ivanov, K. A., Putics, Á. & 9 other authors ( 2003; ). Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 84, 2305–2315.[CrossRef]
    [Google Scholar]
  35. van der Hoek, L., Pyrc, K., Jebbink, M. F. & 7 other authors ( 2004; ). Identification of a new human coronavirus. Nat Med 10, 368–373.[CrossRef]
    [Google Scholar]
  36. Ziebuhr, J. ( 2005; ). The coronavirus replicase. Curr Top Microbiol Immunol 287, 57–94.
    [Google Scholar]
  37. Ziebuhr, J. & Siddell, S. G. ( 1999; ). Processing of the human coronavirus 229E replicase polyproteins by the virus-encoded 3C-like proteinase: identification of proteolytic products and cleavage sites common to pp1a and pp1ab. J Virol 73, 177–185.
    [Google Scholar]
  38. Ziebuhr, J., Herold, J. & Siddell, S. G. ( 1995; ). Characterization of a human coronavirus (strain 229E) 3C-like proteinase activity. J Virol 69, 4331–4338.
    [Google Scholar]
  39. Ziebuhr, J., Snijder, E. J. & Gorbalenya, A. E. ( 2000; ). Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81, 853–879.
    [Google Scholar]
  40. Ziebuhr, J., Thiel, V. & Gorbalenya, A. E. ( 2001; ). The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. J Biol Chem 276, 33220–33232.[CrossRef]
    [Google Scholar]
  41. Zúñiga, S., Sola, I., Alonso, S. & Enjuanes, L. ( 2004; ). Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol 78, 980–994.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81596-0
Loading
/content/journal/jgv/10.1099/vir.0.81596-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error