1887

Abstract

The complete genome of West Nile (Sarafend) virus [WN(S)V] was sequenced. Phylogenetic trees utilizing the complete genomic sequence, capsid gene, envelope gene and NS5 gene/3′ untranslated region of WN(S)V classified WN(S)V as a lineage II virus. A full-length infectious clone of WN(S)V with a point mutation in the glycosylation site of the envelope protein (pWNS-S154A) was constructed. Both growth kinetics and the mode of maturation were affected by this mutation. The titre of the pWNS-S154A virus was lower than the wild-type virus. This defect was corrected by the expression of wild-type envelope protein in . The pWNS-S154A virus matured intracellularly instead of at the plasma membrane as shown for the parental WN(S)V.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81320-0
2006-03-01
2019-08-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/3/613.html?itemId=/content/journal/jgv/10.1099/vir.0.81320-0&mimeType=html&fmt=ahah

References

  1. Adams, S. C., Broom, A. K., Sammels, L. M., Hartnett, A. C., Howard, M. J., Coelen, R. J., Mackenzie, J. S. & Hall, R. A. ( 1995; ). Glycosylation and antigenic variation among Kunjin virus isolates. Virology 206, 49–56.[CrossRef]
    [Google Scholar]
  2. Bakonyi, T., Hubalek, Z., Rudolf, I. & Nowotny, N. ( 2005; ). Novel flavivirus or new lineage of West Nile virus, central Europe. Emerg Infect Dis 11, 225–231.[CrossRef]
    [Google Scholar]
  3. Beasley, D. W. & Barrett, A. D. ( 2002; ). Identification of neutralizing epitopes within structural domain III of the West Nile virus envelope protein. J Virol 76, 13097–13100.[CrossRef]
    [Google Scholar]
  4. Beasley, D. W., Li, L., Suderman, M. T. & Barrett, A. D. ( 2002; ). Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype. Virology 296, 17–23.[CrossRef]
    [Google Scholar]
  5. Berthet, F. X., Zeller, H. G., Drouet, M. T., Rauzier, J., Digoutte, J. P. & Deubel, V. ( 1997; ). Extensive nucleotide changes and deletions within the envelope glycoprotein gene of Euro-African West Nile viruses. J Gen Virol 78, 2293–2297.
    [Google Scholar]
  6. Bhuvanakantham, R. & Ng, M. L. ( 2005; ). Analysis of self-association of West Nile virus capsid protein and the crucial role played by Trp 69 in homodimerization. Biochem Biophys Res Commun 329, 246–255.[CrossRef]
    [Google Scholar]
  7. Brandt, M., Yao, K., Liu, M., Heckert, R. A. & Vakharia, V. N. ( 2001; ). Molecular determinants of virulence, cell tropism, and pathogenic phenotype of infectious bursal disease virus. J Virol 75, 11974–11982.[CrossRef]
    [Google Scholar]
  8. Bressanelli, S., Stiasny, K., Allison, S. L., Stura, E. A., Duquerroy, S., Lescar, J., Heinz, F. X. & Rey, F. A. ( 2004; ). Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J 23, 728–738.[CrossRef]
    [Google Scholar]
  9. Chambers, T. J., Hahn, C. S., Galler, R. & Rice, C. M. ( 1990; ). Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44, 649–688.[CrossRef]
    [Google Scholar]
  10. Chambers, T. J., Halevy, M., Nestorowicz, A., Rice, C. M. & Lustig, S. ( 1998; ). West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness. J Gen Virol 79, 2375–2380.
    [Google Scholar]
  11. Halevy, M., Akov, Y., Ben-Nathan, D., Kobiler, D., Lachmi, B. & Lustig, S. ( 1994; ). Loss of active neuroinvasiveness in attenuated strains of West Nile virus: pathogenicity in immunocompetent and SCID mice. Arch Virol 137, 355–370.[CrossRef]
    [Google Scholar]
  12. Hase, T. ( 1993; ). Virus-neuron interactions in the mouse brain infected with Japanese encephalitis virus. Virchows Arch B Cell Pathol Incl Mol Pathol 64, 161–170.[CrossRef]
    [Google Scholar]
  13. Hase, T., Summers, P. L., Eckels, K. H. & Baze, W. B. ( 1987a; ). Maturation process of Japanese encephalitis virus in cultured mosquito cells in vivo and mouse brain cells in vivo. Arch Virol 96, 135–151.[CrossRef]
    [Google Scholar]
  14. Hase, T., Summers, P. L., Eckels, K. H. & Baze, W. B. ( 1987b; ). An electron and immunoelectron microscopic study of dengue-2 virus infection of cultured mosquito cells: maturation events. Arch Virol 92, 273–291.[CrossRef]
    [Google Scholar]
  15. Heinz, F. X. ( 1986; ). Epitope mapping of flavivirus glycoproteins. Adv Virus Res 31, 103–168.
    [Google Scholar]
  16. Ishak, H., Takegami, T., Kamimura, K. & Funada, H. ( 2001; ). Comparative sequences of two type 1 dengue virus strains possessing different growth characteristics in vivo. Microbiol Immunol 45, 327–331.[CrossRef]
    [Google Scholar]
  17. Johnson, A. J., Guirakhoo, F. & Roehrig, J. T. ( 1994; ). The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology 203, 241–249.[CrossRef]
    [Google Scholar]
  18. Lad, V. J., Shende, V. R., Gupta, A. K., Koshy, A. A. & Roy, A. ( 2000; ). Effect of tunicamycin on expression of epitopes on Japanese encephalitis virus glycoprotein E in porcine kidney cells. Acta Virol 44, 359–364.
    [Google Scholar]
  19. Lanciotti, R. S., Ebel, G. D., Deubel, V. & 9 other authors ( 2002; ). Complete genome sequences and phylogenetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology 298, 96–105.[CrossRef]
    [Google Scholar]
  20. Li, J., Bhuvanakantham, R., Howe, J. & Ng, M. L. ( 2005a; ). Identifying the region influencing the cis-mode of maturation of West Nile (Sarafend) virus using chimeric infectious clones. Biochem Biophys Res Commun 334, 714–720.[CrossRef]
    [Google Scholar]
  21. Li, L., Barrett, A. D. & Beasley, D. W. ( 2005b; ). Differential expression of domain III neutralizing epitopes on the envelope proteins of West Nile virus strains. Virology 335, 99–105.[CrossRef]
    [Google Scholar]
  22. Lobigs, M., Dalgarno, L., Schlesinger, J. J. & Weir, R. C. ( 1987; ). Location of a neutralization determinant in the E protein of yellow fever virus (17D vaccine strain). Virology 161, 474–478.[CrossRef]
    [Google Scholar]
  23. Lorenz, I. C., Kartenbeck, J., Mezzacasa, A., Allison, S. L., Heinz, F. X. & Helenius, A. ( 2003; ). Intracellular assembly and secretion of recombinant subviral particles from tick-borne encephalitis virus. J Virol 77, 4370–4382.[CrossRef]
    [Google Scholar]
  24. McMinn, P. C., Lee, E., Hartley, S., Roehrig, J. T., Dalgarno, L. & Weir, R. C. ( 1995; ). Murray Valley encephalitis virus envelope protein antigenic variants with altered hemagglutination properties and reduced neuroinvasiveness in mice. Virology 211, 10–20.[CrossRef]
    [Google Scholar]
  25. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. ( 2003; ). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A 100, 6986–6991.[CrossRef]
    [Google Scholar]
  26. Mukhopadhyay, S., Kim, B. S., Chipman, P. R., Rossmann, M. G. & Kuhn, R. J. ( 2003; ). Structure of West Nile virus. Science 302, 248.[CrossRef]
    [Google Scholar]
  27. Navarro-Sanchez, E., Altmeyer, R., Amara, A., Schwartz, O., Fieschi, F., Virelizier, J. L., Arenzana-Seisdedos, F. & Despres, P. ( 2003; ). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep 4, 723–728.[CrossRef]
    [Google Scholar]
  28. Ng, M. L. ( 1987; ). Ultrastructural studies of Kunjin virus-infected Aedes albopictus cells. J Gen Virol 68, 577–582.[CrossRef]
    [Google Scholar]
  29. Ng, M. L., Howe, J., Sreenivasan, V. & Mulders, J. J. ( 1994; ). Flavivirus West Nile (Sarafend) egress at the plasma membrane. Arch Virol 137, 303–313.[CrossRef]
    [Google Scholar]
  30. Oliphant, T., Engle, M., Nybakken, G. E. & 11 other authors ( 2005; ). Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11, 522–530.[CrossRef]
    [Google Scholar]
  31. Pletnev, A. G., Bray, M. & Lai, C. J. ( 1993; ). Chimeric tick-borne encephalitis and dengue type 4 viruses: effects of mutations on neurovirulence in mice. J Virol 67, 4956–4963.
    [Google Scholar]
  32. Rahman, S., Matsumura, T., Masuda, K., Kanemura, K. & Fukunaga, T. ( 1998; ). Maturation site of dengue type 2 virus in cultured mosquito C6/36 cells and Vero cells. Kobe J Med Sci 44, 65–79.
    [Google Scholar]
  33. Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. ( 1995; ). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298.[CrossRef]
    [Google Scholar]
  34. Ryman, K. D., Ledger, T. N., Weir, R. C., Schlesinger, J. J. & Barrett, A. D. ( 1997; ). Yellow fever virus envelope protein has two discrete type-specific neutralizing epitopes. J Gen Virol 78, 1353–1356.
    [Google Scholar]
  35. Sanchez, M. D., Pierson, T. C., McAllister, D., Hanna, S. L., Puffer, B. A., Valentine, L. E., Murtadha, M. M., Hoxie, J. A. & Doms, R. W. ( 2005; ). Characterization of neutralizing antibodies to West Nile virus. Virology 336, 70–82.[CrossRef]
    [Google Scholar]
  36. Scherret, J. H., Poidinger, M., Mackenzie, J. S., Broom, A. K., Deubel, V., Lipkin, W. I., Briese, T., Gould, E. A. & Hall, R. A. ( 2001a; ). The relationships between West Nile and Kunjin viruses. Emerg Infect Dis 7, 697–705.[CrossRef]
    [Google Scholar]
  37. Scherret, J. H., Mackenzie, J. S., Khromykh, A. A. & Hall, R. A. ( 2001b; ). Biological significance of glycosylation of the envelope protein of Kunjin virus. Ann N Y Acad Sci 951, 361–363.
    [Google Scholar]
  38. Scherret, J. H., Mackenzie, J. S., Hall, R. A., Deubel, V. & Gould, E. A. ( 2002; ). Phylogeny and molecular epidemiology of West Nile and Kunjin viruses. Curr Top Microbiol Immunol 267, 373–390.
    [Google Scholar]
  39. Serafino, A., Valli, M. B., Alessandrini, A., Ponzetto, A., Carloni, G. & Bertolini, L. ( 1997; ). Ultrastructural observations of viral particles within hepatitis C virus-infected human B lymphoblastoid cell line. Res Virol 148, 153–159.[CrossRef]
    [Google Scholar]
  40. Shi, P. Y., Tilgner, M., Lo, M. K., Kent, K. A. & Bernard, K. A. ( 2002; ). Infectious cDNA clone of the epidemic West Nile virus from New York City. J Virol 76, 5847–5856.[CrossRef]
    [Google Scholar]
  41. Shirato, K., Miyoshi, H., Goto, A., Ako, Y., Ueki, T., Kariwa, H. & Takashima, I. ( 2004; ). Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J Gen Virol 85, 3637–3645.[CrossRef]
    [Google Scholar]
  42. Sreenivasan, V., Ng, K. L. & Ng, M. L. ( 1993; ). Brefeldin A affects West Nile virus replication in Vero cells but not C6/36 cells. J Virol Methods 45, 1–17.[CrossRef]
    [Google Scholar]
  43. Vorndam, V., Mathews, J. H., Barrett, A. D., Roehrig, J. T. & Trent, D. W. ( 1993; ). Molecular and biological characterization of a non-glycosylated isolate of St Louis encephalitis virus. J Gen Virol 74, 2653–2660.[CrossRef]
    [Google Scholar]
  44. Wang, Y., Lobigs, M., Lee, E. & Mullbacher, A. ( 2003; ). CD8+ T cells mediate recovery and immunopathology in West Nile virus encephalitis. J Virol 77, 13323–13334.[CrossRef]
    [Google Scholar]
  45. Westaway, E. G., Brinton, M. A., Gaidamovich, S. & 7 other authors ( 1985; ). Flaviviridae. Intervirology 24, 183–192.[CrossRef]
    [Google Scholar]
  46. Whealy, M. E., Card, J. P., Meade, R. P., Robbins, A. K. & Enquist, L. W. ( 1991; ). Effect of brefeldin A on alphaherpesvirus membrane protein glycosylation and virus egress. J Virol 65, 1066–1081.
    [Google Scholar]
  47. Zhang, W., Chipman, P. R., Corver, J. & 7 other authors ( 2003; ). Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat Struct Biol 10, 907–912.[CrossRef]
    [Google Scholar]
  48. Zhang, Y., Zhang, W., Ogata, S., Clements, D., Strauss, J. H., Baker, T. S., Kuhn, R. J. & Rossmann, M. G. ( 2004; ). Conformational changes of the flavivirus E glycoprotein. Structure 12, 1607–1618.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81320-0
Loading
/content/journal/jgv/10.1099/vir.0.81320-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error