-
Volume 87,
Issue 3,
2006
Volume 87, Issue 3, 2006
- Animal
-
- DNA viruses
-
-
Cloning of the genome of Alcelaphine herpesvirus 1 as an infectious and pathogenic bacterial artificial chromosome
Alcelaphine herpesvirus 1 (AlHV-1), carried asymptomatically by wildebeest, causes malignant catarrhal fever (MCF) following cross-species transmission to a variety of susceptible species of the order Artiodactyla. The study of MCF pathogenesis has been impeded by an inability to produce recombinant virus, mainly due to the fact that AlHV-1 becomes attenuated during passage in culture. In this study, these difficulties were overcome by cloning the entire AlHV-1 genome as a stable, infectious and pathogenic bacterial artificial chromosome (BAC). A modified loxP-flanked BAC cassette was inserted in one of the two large non-coding regions of the AlHV-1 genome. This insertion allowed the production of an AlHV-1 BAC clone stably maintained in bacteria and able to regenerate virions when transfected into permissive cells. The loxP-flanked BAC cassette was excised from the genome of reconstituted virions by growing them in permissive cells stably expressing Cre recombinase. Importantly, BAC-derived AlHV-1 virions replicated comparably to the virulent (low-passage) AlHV-1 parental strain and induced MCF in rabbits that was indistinguishable from that of the virulent parental strain. The availability of the AlHV-1 BAC is an important advance for the study of MCF that will allow the identification of viral genes involved in MCF pathogenesis, as well as the production of attenuated recombinant candidate vaccines.
-
-
-
Identifying cellular genes crucial for the reactivation of Kaposi's sarcoma-associated herpesvirus latency
More LessKaposi's sarcoma-associated herpesvirus (KSHV) is the latest addition to the long list of human herpesviruses. Reactivation of latent herpesvirus infections is still a mystery. It was demonstrated recently that the phorbol ester TPA was efficient in inducing a reactivation of KSHV infection in the S phase of the cell cycle. In the present study, flow cytometry-sorted, TPA-induced, KSHV-infected haematopoietic cells (BCBL-1) were used to analyse the expression profiles of cancer-related cellular genes in the S phase of the cell cycle compared with the G0/1 phase by using microarrays. Overall, the S phase of the cell cycle seems to provide KSHV with an apt environment for a productive lytic cycle of infection. The apt conditions include cellular signalling that promotes survivability, DNA replication and lipid metabolism, while blocking cell-cycle progression to M phase. Some of the important genes that were overexpressed during the S phase of the cell cycle compared with the G0/1 phase of TPA-induced BCBL-1 cells are v-myb myeloblastosis (MYBL2), protein kinase-membrane associated tyrosine/threonine 1 (PKMYT1), ribonucleotide reductase M1 polypeptide (RRM1) and peroxisome proliferator-activated receptors delta (PPARD). Inhibition of PKMYT1 expression by the use of specific short interfering RNAs significantly lowered the TPA-induced KSHV lytic cycle of infection. The significance of these and other genes in the reactivation of KSHV is discussed in the following report. Taken together, a flow cytometry–microarray-based method to study the cellular conditions critical for the reactivation of KSHV infection is reported here for the first time.
-
-
-
Dual mutations in the Autographa californica nucleopolyhedrovirus FP-25 and p35 genes result in plasma-membrane blebbing in Trichoplusia ni cells
More LessSpodoptera frugiperda cells infected with Autographa californica nucleopolyhedrovirus (AcMNPV) lacking a functional anti-apoptotic p35 protein undergo apoptosis. However, such mutants replicate normally in Trichoplusia ni (TN-368) cells. An AcMNPV plaque isolate (AcdefrT) was identified during propagation of a virus deficient in p35 in TN-368 cells. This virus exhibited enhanced budded-particle formation in TN-368 cells, but was partially defective for polyhedra production in the same cells. Virus replication in AcdefrT-infected TN-368 cells was accompanied by extensive plasma-membrane blebbing and caspase activation late in infection, both features of apoptosis. Rescue of the p35 locus of AcdefrT continued to result in a reduction in polyhedra and increase in budded virus production in TN-368 cells, but no plasma-membrane blebbing was observed. The mutation was mapped to the FP-25 gene locus. This gene mutation combined with the non-functional p35 was found to be responsible for the cell-blebbing effect observed in AcdefrT-infected TN-368 cells.
-
-
-
Genome sequence of an enhancin gene-rich nucleopolyhedrovirus (NPV) from Agrotis segetum: collinearity with Spodoptera exigua multiple NPV
More LessThe genome sequence of a Polish isolate of Agrotis segetum nucleopolyhedrovirus (AgseNPV-A) was determined and analysed. The circular genome is composed of 147 544 bp and has a G+C content of 45·7 mol%. It contains 153 putative, non-overlapping open reading frames (ORFs) encoding predicted proteins of more than 50 aa, together making up 89·8 % of the genome. The remaining 10·2 % of the DNA constitutes non-coding regions and homologous-repeat regions. One hundred and forty-three AgseNPV-A ORFs are homologues of previously reported baculovirus gene sequences. There are ten unique ORFs and they account for 3 % of the genome in total. All 62 lepidopteran baculovirus genes, including the 29 core baculovirus genes, were found in the AgseNPV-A genome. The gene content and gene order of AgseNPV-A are most similar to those of Spodoptera exigua (Se) multiple NPV and their shared homologous genes are 100 % collinear. Three putative enhancin genes were identified in the AgseNPV-A genome. In phylogenetic analysis, the AgseNPV-A enhancins form a cluster separated from enhancins of the Mamestra species NPVs.
-
-
-
Relaxed template specificity in fowl adenovirus 1 DNA replication initiation
The fowl adenovirus 1 (FAdV-1) isolates PHELPS and OTE are highly similar, but have striking differences in the repeat region of the inverted terminal repeat (ITR). Whilst the repeat region in OTE conforms to the conventional human adenovirus repeat region (5′-CATCATC), that of PHELPS contains guanidine residues at positions 1, 4 and 7 (5′-GATGATG). This implies that the FAdV-1 isolates PHELPS and OTE have either distinct template specificity at replication initiation or, alternatively, a relaxed specificity for replication initiation. In this study, the distinct sequence variation at the origin of DNA replication in the ITRs of the FAdV-1 PHELPS and OTE isolates was confirmed. Sequence analyses of the pTP and Pol genes of both PHELPS and OTE did not reveal differences that could explain the distinct template specificity. Replication assays demonstrated that linear DNA fragments flanked by either 5′-CATCATC or 5′-GATGATG termini replicated in cells upon infection with FAdV-1 OTE and FAdV-1 PHELPS. This was evident from the appearance of DpnI-resistant fragments in a minireplicon assay. From these data, it is concluded that FAdV-1 has relaxed, rather than changed, its template specificity at replication initiation.
-
- Plant Viruses
-
-
-
Cytological analysis of Saccharomyces cerevisiae cells supporting cymbidium ringspot virus defective interfering RNA replication
More LessThe replicase proteins p33 and p92 of Cymbidium ringspot virus (CymRSV) were found to support the replication of defective interfering (DI) RNA in Saccharomyces cerevisiae cells. Two yeast strains were used, differing in the biogenesis of peroxisomes, the organelles supplying the membranous vesicular environment in which CymRSV RNA replication takes place in infected plant cells. Double-labelled immunofluorescence showed that both p33 and p92 replicase proteins localized to peroxisomes, independently of one another and of the presence of the replication template. It is suggested that these proteins are sorted initially from the cytosol to the endoplasmic reticulum and then to peroxisomes. However, only the expression of p33, but not p92, increased the number of peroxisomes and induced membrane proliferation. DI RNA replication occurred in yeast cells, as demonstrated by the presence of monomers and dimers of positive and negative polarities. Labelling with BrUTP showed that peroxisomes were the sites of nascent viral synthesis, whereas in situ hybridization indicated that DI RNA progeny were diffused throughout the cytoplasm. DI RNA replication also took place in yeast cells devoid of peroxisomes. It is suggested that replication in these cells was targeted to the endoplasmic reticulum.
-
-
-
-
Essential role of the Box II cis element and cognate host factors in regulating the promoter of Rice tungro bacilliform virus
More LessRice tungro bacilliform virus (RTBV) is a double-stranded DNA virus with a single, tissue-specific promoter that is expressed primarily in phloem tissues. Rice transcription factors RF2a and RF2b bind to Box II, a cis element adjacent to the TATA box, and control gene expression from the promoter. Mutations were made in the promoter to delete or mutate Box II and the mutated promoters were fused to a reporter gene; the chimeric genes were expressed in transient BY-2 protoplast assays and in transgenic Arabidopsis plants. The results of these studies showed that Box II is essential to the activity of the RTBV promoter. A chimeric β-glucuronidase (GUS) reporter gene containing the Box II sequence and a minimal promoter derived from the Cauliflower mosaic virus 35S promoter were co-transfected into protoplasts with gene constructs that encoded RF2a or RF2b. The reporter gene produced threefold higher GUS activity when co-transfected with RF2a, and 11-fold higher activity when co-transfected with RF2b, than in the absence of added transcription factors. Moreover, chimeric reporter genes were activated by approximately threefold following induction of expression of the RF2a gene in transgenic Arabidopsis plants. The work presented here and earlier findings show that Box II and its interactions with cognate rice transcription factors, including RF2a and RF2b, are essential to the activity of the RTBV promoter and are probably involved in expression of the RTBV genome during virus replication.
-
- Jgv Direct
-
-
-
An RNA aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion
Aptamers selected against various kinds of targets have shown remarkable specificity and affinity, similar to those displayed by antibodies to their antigens. To employ aptamers as genotyping reagents for the identification of pathogens and their strains, in vitro selections were carried out to find aptamers that specifically bind and distinguish the closely related human influenza A virus subtype H3N2. The selected aptamer, P30-10-16, binds specifically to the haemagglutinin (HA) region of the target strain A/Panama/2007/1999(H3N2) and failed to recognize other human influenza viruses, including another strain with the same subtype, H3N2. The aptamer displayed over 15-fold-higher affinity to the HA compared with the monoclonal antibody, and efficiently inhibited HA-mediated membrane fusion. These studies delineate the application of aptamers in the genotyping of viruses.
-
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)
Most Read This Month

Most cited Most Cited RSS feed
-
-
-
-
ICTV Virus Taxonomy Profile: Rhabdoviridae 2022
Peter J. Walker, Juliana Freitas-Astúa, Nicolas Bejerman, Kim R. Blasdell, Rachel Breyta, Ralf G. Dietzgen, Anthony R. Fooks, Hideki Kondo, Gael Kurath, Ivan V. Kuzmin, Pedro Luis Ramos-González, Mang Shi, David M. Stone, Robert B. Tesh, Noël Tordo, Nikos Vasilakis, Anna E. Whitfield and ICTV Report Consortium
-
- More Less