1887

Abstract

Two different severe acute respiratory syndrome (SARS) vaccine strategies were evaluated for their ability to protect against live SARS coronavirus (CoV) challenge in a murine model of infection. A whole killed (inactivated by -propiolactone) SARS-CoV vaccine and a combination of two adenovirus-based vectors, one expressing the nucleocapsid (N) and the other expressing the spike (S) protein (collectively designated Ad S/N), were evaluated for the induction of serum neutralizing antibodies and cellular immune responses and their ability to protect against pulmonary SARS-CoV replication. The whole killed virus (WKV) vaccine given subcutaneously to 129S6/SvEv mice was more effective than the Ad S/N vaccine administered either intranasally or intramuscularly in inhibiting SARS-CoV replication in the murine respiratory tract. This protective ability of the WKV vaccine correlated with the induction of high serum neutralizing-antibody titres, but not with cellular immune responses as measured by gamma interferon secretion by mouse splenocytes. Titres of serum neutralizing antibodies induced by the Ad S/N vaccine administered intranasally or intramuscularly were significantly lower than those induced by the WKV vaccine. However, Ad S/N administered intranasally, but not intramuscularly, significantly limited SARS-CoV replication in the lungs. Among the vaccine groups, SARS-CoV-specific IgA was found only in the sera of mice immunized intranasally with Ad S/N, suggesting that mucosal immunity may play a role in protection for the intranasal Ad S/N delivery system. Finally, the sera of vaccinated mice contained antibodies to S, further suggesting a role for this protein in conferring protective immunity against SARS-CoV infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.81579-0
2006-03-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/3/641.html?itemId=/content/journal/jgv/10.1099/vir.0.81579-0&mimeType=html&fmt=ahah

References

  1. Antón, I. M., González, S., Bullido, M. J., Corsín, M., Risco, C., Langeveld, J. P. M. & Enjuanes, L. ( 1996; ). Cooperation between transmissible gastroenteritis coronavirus (TGEV) structural proteins in the in vitro induction of virus-specific antibodies. Virus Res 46, 111–124.[CrossRef]
    [Google Scholar]
  2. Babcock, G. J., Esshaki, D. J., Thomas, W. D., Jr & Ambrosino, D. M. ( 2004; ). Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J Virol 78, 4552–4560.[CrossRef]
    [Google Scholar]
  3. Berger, A., Drosten, Ch., Doerr, H. W., Stürmer, M. & Preiser, W. ( 2004; ). Severe acute respiratory syndrome (SARS) – paradigm of an emerging viral infection. J Clin Virol 29, 13–22.[CrossRef]
    [Google Scholar]
  4. Bisht, H., Roberts, A., Vogel, L., Bukreyev, A., Collins, P. L., Murphy, B. R., Subbarao, K. & Moss, B. ( 2004; ). Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A 101, 6641–6646.[CrossRef]
    [Google Scholar]
  5. Boots, A. M., Kusters, J. G., van Noort, J. M., Zwaagstra, K. A., Rijke, E., van der Zeijst, B. A. & Hensen, E. J. ( 1991; ). Localization of a T-cell epitope within the nucleocapsid protein of avian coronavirus. Immunology 74, 8–13.
    [Google Scholar]
  6. Buchholz, U. J., Bukreyev, A., Yang, L., Lamirande, E. W., Murphy, B. R., Subbarao, K. & Collins, P. L. ( 2004; ). Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci U S A 101, 9804–9809.[CrossRef]
    [Google Scholar]
  7. Bukreyev, A., Lamirande, E. W., Buchholz, U. J., Vogel, L. N., Elkins, W. R., St Claire, M., Murphy, B. R., Subbarao, K. & Collins, P. L. ( 2004; ). Mucosal immunisation of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363, 2122–2127.[CrossRef]
    [Google Scholar]
  8. Cavanagh, D. ( 2003; ). Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious bronchitis coronavirus. Avian Pathol 32, 567–582.[CrossRef]
    [Google Scholar]
  9. CDC NIH ( 1999; ). Biosafety in Microbiological and Biomedical Laboratories, 4th edn. Washington, DC: US Government Printing Office.
  10. Collisson, E. W., Pei, J., Dzielawa, J. & Seo, S. H. ( 2000; ). Cytotoxic T lymphocytes are critical in the control of infectious bronchitis virus in poultry. Dev Comp Immunol 24, 187–200.[CrossRef]
    [Google Scholar]
  11. Enjuanes, L., Smerdou, C., Castilla, J., Anton, I. M., Torres, J. M., Sola, I., Golvano, J., Sanchez, J. M. & Pintado, B. ( 1995; ). Development of protection against coronavirus induced diseases. A review. Adv Exp Med Biol 380, 197–211.
    [Google Scholar]
  12. Finlay, B. B., See, R. H. & Brunham, R. C. ( 2004; ). Rapid response research to emerging infectious diseases: lessons from SARS. Nat Rev Microbiol 2, 602–607.[CrossRef]
    [Google Scholar]
  13. Fouchier, R. A. M., Kuiken, T., Schutten, M. & 7 other authors ( 2003; ). Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423, 240.[CrossRef]
    [Google Scholar]
  14. Glass, W. G., Subbarao, K., Murphy, B. & Murphy, P. M. ( 2004; ). Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol 173, 4030–4039.[CrossRef]
    [Google Scholar]
  15. Guo, J.-P., Petric, M., Campbell, W. & McGeer, P. L. ( 2004; ). SARS corona virus peptides recognized by antibodies in the sera of convalescent cases. Virology 324, 251–256.[CrossRef]
    [Google Scholar]
  16. He, Y., Zhou, Y., Siddiqui, P. & Jiang, S. ( 2004; ). Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry. Biochem Biophys Res Commun 325, 445–452.[CrossRef]
    [Google Scholar]
  17. Hitt, M. M., Ng, P. & Graham, F. L. ( 2005; ). Construction and propagation of human adenovirus vectors. In Cell Biology: a Laboratory Handbook, 3rd edn, vol. 1, pp. 435–443. Edited by J. E. Celis. San Diego: Academic Press.
  18. Hogan, R. J., Gao, G., Rowe, T. & 10 other authors ( 2004; ). Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1. J Virol 78, 11416–11421.[CrossRef]
    [Google Scholar]
  19. Hollander, M. & Wolfe, D. A. ( 1973; ). Nonparametric Statistical Methods. New York: Wiley.
  20. Kenney, R. T. & Edelman, R. ( 2003; ). Survey of human-use adjuvants. Expert Rev Vaccines 2, 167–188.[CrossRef]
    [Google Scholar]
  21. Kim, T. W., Lee, J. H., Hung, C.-F. & 9 other authors ( 2004; ). Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus. J Virol 78, 4638–4645.[CrossRef]
    [Google Scholar]
  22. Kuiken, T., Fouchier, R. A. M., Schutten, M. & 19 other authors ( 2003; ). Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263–270.[CrossRef]
    [Google Scholar]
  23. Li, W., Moore, M. J., Vasilieva, N. & 9 other authors ( 2003; ). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450–454.[CrossRef]
    [Google Scholar]
  24. Liu, X., Shi, Y., Li, P., Li, L., Yi, Y., Ma, Q. & Cao, C. ( 2004; ). Profile of antibodies to the nucleocapsid protein of the severe acute respiratory syndrome (SARS)-associated coronavirus in probable SARS patients. Clin Diagn Lab Immunol 11, 227–228.
    [Google Scholar]
  25. Marra, M. A., Jones, S. J. M., Astell, C. R. & 56 other authors ( 2003; ). The genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404.[CrossRef]
    [Google Scholar]
  26. Martina, B. E. E., Haagmans, B. L., Kuiken, T., Fouchier, R. A. M., Rimmelzwaan, G. F., van Amerongen, G., Peiris, J. S. M., Lim, W. & Osterhaus, A. D. M. E. ( 2003; ). Virology: SARS virus infection of cats and ferrets. Nature 425, 915.[CrossRef]
    [Google Scholar]
  27. Matthews, D. A., Cummings, D., Evelegh, C., Graham, F. L. & Prevec, L. ( 1999; ). Development and use of a 293 cell line expressing lac repressor for the rescue of recombinant adenoviruses expressing high levels of rabies virus glycoprotein. J Gen Virol 80, 345–353.
    [Google Scholar]
  28. McAuliffe, J., Vogel, L., Roberts, A. & 8 other authors ( 2004; ). Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology 330, 8–15.[CrossRef]
    [Google Scholar]
  29. Navas-Martin, S. & Weiss, S. R. ( 2003; ). SARS: lessons learned from other coronaviruses. Viral Immunol 16, 461–474.[CrossRef]
    [Google Scholar]
  30. Ng, P., Parks, R. J., Cummings, D. T., Evelegh, C. M. & Graham, F. L. ( 2000; ). An enhanced system for construction of adenoviral vectors by the two-plasmid rescue method. Hum Gene Ther 11, 693–699.[CrossRef]
    [Google Scholar]
  31. NRC ( 1996; ). Guide for the Care and Use of Laboratory Animals. Washington, DC: National Research Council.
  32. Olsen, C. W. ( 1993; ). A review of feline infectious peritonitis virus: molecular biology, immunopathogenesis, clinical aspects, and vaccination. Vet Microbiol 36, 1–37.[CrossRef]
    [Google Scholar]
  33. Pang, H., Liu, Y., Han, X., Xu, Y., Jiang, F., Wu, D., Kong, X., Bartlam, M. & Rao, Z. ( 2004; ). Protective humoral responses to severe acute respiratory syndrome-associated coronavirus: implications for the design of an effective protein-based vaccine. J Gen Virol 85, 3109–3113.[CrossRef]
    [Google Scholar]
  34. Peiris, J. S. M., Yuen, K. Y., Osterhaus, A. D. M. E. & Stöhr, K. ( 2003; ). The severe acute respiratory syndrome. N Engl J Med 349, 2431–2441.[CrossRef]
    [Google Scholar]
  35. Pratelli, A., Tinelli, A., Decaro, N., Cirone, F., Elia, G., Roperto, S., Tempesta, M. & Buonavoglia, C. ( 2003; ). Efficacy of an inactivated canine coronavirus vaccine in pups. New Microbiol 26, 151–155.
    [Google Scholar]
  36. Qu, D., Zheng, B., Yao, X., Guan, Y., Yuan, Z.-H., Zhong, N.-S., Lu, L.-W., Xie, J.-P. & Wen, Y.-M. ( 2005; ). Intranasal immunization with inactivated SARS-CoV (SARS-associated coronavirus) induced local and serum antibodies in mice. Vaccine 23, 924–931.[CrossRef]
    [Google Scholar]
  37. Reed, L. J. & Muench, H. ( 1938; ). A simple method of estimating fifty percent endpoints. Am J Hyg 27, 493–497.
    [Google Scholar]
  38. Roberts, A., Vogel, L., Guarner, J., Hayes, N., Murphy, B., Zaki, S. & Subbarao, K. ( 2005; ). Severe acute respiratory syndrome coronavirus infection of golden Syrian hamsters. J Virol 79, 503–511.[CrossRef]
    [Google Scholar]
  39. Rota, P. A., Oberste, M. S., Monroe, S. S. & 32 other authors ( 2003; ). Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–1399.[CrossRef]
    [Google Scholar]
  40. Saif, L. J. ( 2004; ). Animal coronavirus vaccines: lessons for SARS. Dev Biol (Basel) 119, 129–140.
    [Google Scholar]
  41. Sanchez-Lopez, R., Nicholson, R., Gesnel, M. C., Matrisian, L. M. & Breathnach, R. ( 1988; ). Structure-function relationships in the collagenase family member transin. J Biol Chem 263, 11892–11899.
    [Google Scholar]
  42. Schmidt, N. ( 1989; ). Cell culture procedures for diagnostic virology. In Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections, 6th edn, pp. 51–100. Edited by N. Schmidt & R. Emmons. Washington, DC: American Public Health Association.
  43. See, R. H., Roper, R. L., Brunham, R. C. & Finlay, B. B. ( 2005; ). Rapid response research – SARS coronavirus vaccines and application of processes to other emerging infectious diseases. Curr Immunol Rev 1, 185–200.[CrossRef]
    [Google Scholar]
  44. Seo, S. H., Wang, L., Smith, R. & Collisson, E. W. ( 1997; ). The carboxyl-terminal 120-residue polypeptide of infectious bronchitis virus nucleocapsid induces cytotoxic T lymphocytes and protects chickens from acute infection. J Virol 71, 7889–7894.
    [Google Scholar]
  45. Smee, D. F., Huffman, J. H., Morrison, A. C., Barnard, D. L. & Sidwell, R. W. ( 2001; ). Cyclopentane neuraminidase inhibitors with potent in vitro anti-influenza virus activities. Antimicrob Agents Chemother 45, 743–748.[CrossRef]
    [Google Scholar]
  46. Stadler, K., Roberts, A., Becker, S. & 8 other authors ( 2005; ). SARS vaccine protective in mice. Emerg Infect Dis 11, 1312–1314.[CrossRef]
    [Google Scholar]
  47. Stohlman, S. A., Kyuwa, S., Polo, J. M., Brady, D., Lai, M. M. C. & Bergmann, C. C. ( 1993; ). Characterization of mouse hepatitis virus-specific cytotoxic T cells derived from the central nervous system of mice infected with the JHM strain. J Virol 67, 7050–7059.
    [Google Scholar]
  48. Stohlman, S. A., Bergmann, C. C., van der Veen, R. C. & Hinton, D. R. ( 1995; ). Mouse hepatitis virus-specific cytotoxic T lymphocytes protect from lethal infection without eliminating virus from the central nervous system. J Virol 69, 684–694.
    [Google Scholar]
  49. Subbarao, K., McAuliffe, J., Vogel, L. & 7 other authors ( 2004; ). Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 78, 3572–3577.[CrossRef]
    [Google Scholar]
  50. Takamura, K., Matsumoto, Y. & Shimizu, Y. ( 2002; ). Field study of bovine coronavirus vaccine enriched with hemagglutinating antigen for winter dysentery in dairy cows. Can J Vet Res 66, 278–281.
    [Google Scholar]
  51. Takasuka, N., Fujii, H., Takahashi, Y. & 13 other authors ( 2004; ). A subcutaneously injected UV-inactivated SARS coronavirus vaccine elicits systemic humoral immunity in mice. Int Immunol 16, 1423–1430.[CrossRef]
    [Google Scholar]
  52. Tan, Y.-J., Goh, P.-Y., Fielding, B. C. & 9 other authors ( 2004; ). Profiles of antibody responses against severe acute respiratory syndrome coronavirus recombinant proteins and their potential use as diagnostic markers. Clin Diagn Lab Immunol 11, 362–371.
    [Google Scholar]
  53. Tang, L., Zhu, Q., Qin, E. & 15 other authors ( 2004; ). Inactivated SARS-CoV vaccine prepared from whole virus induces a high level of neutralizing antibodies in BALB/c mice. DNA Cell Biol 23, 391–394.[CrossRef]
    [Google Scholar]
  54. Wesseling, J. G., Godeke, G.-J., Schijns, V. E. C. J., Prevec, L., Graham, F. L., Horzinek, M. C. & Rottier, P. J. M. ( 1993; ). Mouse hepatitis virus spike and nucleocapsid proteins expressed by adenovirus vectors protect mice against a lethal infection. J Gen Virol 74, 2061–2069.[CrossRef]
    [Google Scholar]
  55. Wong, S. K., Li, W., Moore, M. J., Choe, H. & Farzan, M. ( 2004; ). A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 279, 3197–3201.
    [Google Scholar]
  56. Woo, P. C. Y., Lau, S. K. P., Wong, B. H. L., Tsoi, H.-W., Fung, A. M. Y., Chan, K.-H., Tam, V. K. P., Peiris, J. S. M. & Yuen, K.-Y. ( 2004; ). Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. J Clin Microbiol 42, 2306–2309.[CrossRef]
    [Google Scholar]
  57. Xiao, X., Chakraborti, S., Dimitrov, A. S., Gramatikoff, K. & Dimitrov, D. S. ( 2003; ). The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Commun 312, 1159–1164.[CrossRef]
    [Google Scholar]
  58. Xiong, S., Wang, Y.-F., Zhang, M.-Y. & 11 other authors ( 2004; ). Immunogenicity of SARS inactivated vaccine in BALB/c mice. Immunol Lett 95, 139–143.[CrossRef]
    [Google Scholar]
  59. Yang, Z.-Y., Kong, W.-P., Huang, Y., Roberts, A., Murphy, B. R., Subbarao, K. & Nabel, G. J. ( 2004; ). A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428, 561–564.[CrossRef]
    [Google Scholar]
  60. Zakhartchouk, A. N., Liu, Q., Petric, M. & Babiuk, L. A. ( 2005a; ). Augmentation of immune responses to SARS coronavirus by a combination of DNA and whole killed virus vaccines. Vaccine 23, 4385–4391.[CrossRef]
    [Google Scholar]
  61. Zakhartchouk, A. N., Viswanathan, S., Mahony, J. B., Gauldie, J. & Babiuk, L. A. ( 2005b; ). Severe acute respiratory syndrome coronavirus nucleocapsid protein expressed by an adenovirus vector is phosphorylated and immunogenic in mice. J Gen Virol 86, 211–215.[CrossRef]
    [Google Scholar]
  62. Zhu, M.-S., Pan, Y., Chen, H.-Q., Shen, Y., Wang, X.-C., Sun, Y.-J. & Tao, K.-H. ( 2004; ). Induction of SARS-nucleoprotein-specific immune response by use of DNA vaccine. Immunol Lett 92, 237–243.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.81579-0
Loading
/content/journal/jgv/10.1099/vir.0.81579-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error