- Volume 72, Issue 4, 2022
Volume 72, Issue 4, 2022
- Letters
-
- Notification Lists
-
- Reviews
-
-
-
Revision of the ‘Candidatus Phytoplasma’ species description guidelines
The genus ‘Candidatus Phytoplasma’ was proposed to accommodate cell wall-less bacteria that are molecularly and biochemically incompletely characterized, and colonize plant phloem and insect vector tissues. This provisional classification is highly relevant due to its application in epidemiological and ecological studies, mainly aimed at keeping the severe phytoplasma plant diseases under control worldwide. Given the increasing discovery of molecular diversity within the genus ‘Ca. Phytoplasma’, the proposed guidelines were revised and clarified to accommodate those ‘Ca. Phytoplasma’ species strains sharing >98.65 % sequence identity of their full or nearly full 16S rRNA gene sequences, obtained with at least twofold coverage of the sequence, compared with those of the reference strain of such species. Strains sharing <98.65 % sequence identity with the reference strain but >98.65 % with other strain(s) within the same ‘Ca. Phytoplasma’ species should be considered related strains to that ‘Ca. Phytoplasma’ species. The guidelines herein, keep the original published reference strains. However, to improve ‘Ca. Phytoplasma’ species assignment, complementary strains are suggested as an alternative to the reference strains. This will be implemented when only a partial 16S rRNA gene and/or a few other genes have been sequenced, or the strain is no longer available for further molecular characterization. Lists of ‘Ca. Phytoplasma’ species and alternative reference strains described are reported. For new ‘Ca. Phytoplasma’ species that will be assigned with identity ≥98.65 % of their 16S rRNA gene sequences, a threshold of 95 % genome-wide average nucleotide identity is suggested. When the whole genome sequences are unavailable, two among conserved housekeeping genes could be used. There are 49 officially published ‘Candidatus Phytoplasma’ species, including ‘Ca. P. cocostanzaniae’ and ‘Ca. P. palmae’ described in this manuscript.
-
-
- New Taxa
-
- Actinobacteria
-
-
Nocardia albiluteola sp. nov., a novel lignin-degrading actinobacterium isolated from rhizosphere soil of pumpkin
A novel lignin-degrading actinobacterium, designated NEAU-G5T, was isolated from pumpkin rhizosphere soil collected from field in Mudanjiang, Heilongjiang Province, northeast China, and characterized using polyphasic approach. The prior 16S rRNA gene sequence similarities and phylogenic analysis showed that strain NEAU-G5T exhibited close phylogenetic relatedness to Nocardia miyunensis NBRC 108239T (98.82 %), Nocardia nova NBRC 15556T (98.75 %), Nocardia jiangxiensis NBRC 101359T (98.68 %) and Nocardia macrotermitis RB20T (98.61 %). Morphological and chemotaxonomic characteristics indicated that strain NEAU-G5T could be assigned to the genus Nocardia . The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid and an unidentified lipid. The predominant menaquinone was MK-8(H4, ω-cycl). The major fatty acids (>10 %) were identified as C16 : 0, C18 : 1 ω9c, 10-methyl C18 : 0 and C18 : 0. Mycolic acids were present. The genomic DNA G+C content of strain NEAU-G5T was 68 mol%. Moreover, based on digital DNA–DNA hybridization and average nucleotide identity values, strain NEAU-G5T could be differentiated from its reference strains. In addition, an azure B plate decolorization test and genomic analysis indicated that strain NEAU-G5T had the ability to degrade lignin. On the basis of polyphasic characteristics, strain NEAU-G5T represents a novel species of the genus Nocardia , with the name Nocardia albiluteola sp. nov. The type strain is NEAU-G5T (=CCTCC AA 2021018T=DSM 110547T).
-
-
-
Streptomyces montanisoli sp. nov., exhibiting antimicrobial activity, isolated from mountain soil around a decaying tree
More LessA Gram-stain-positive, aerobic actinobacterial strain designated MMS17-BM035T isolated from mountain soil around a decaying tree was subjected to taxonomic characterization. The isolate developed extensively branched substrate mycelia and white aerial hyphae on International Streptomyces Project 2 agar. Strain MMS17-BM035T grew at 15–34 °C (optimum, 30 °C), at pH 5.0–8.0 (optimum, pH 7.0) and in the presence of 0–6 % NaCl (optimum, 0 %). Analysis of 16S rRNA gene sequences indicated that MMS17-BM035T fell into a phylogenetic cluster belonging to the genus Streptomyces . MMS17-BM035T shared the highest sequence similarity of 99.45 % with Streptomyces fuscigenes JBL-20T, and no higher than 98.7 % with other species of Streptomyces . Based on the orthologous average nucleotide identity, MMS17-BM035T was again mostly related to S. fuscigenes JBL-20T with 84.14 % identity, and less than 80 % with other species. The digital DNA–DNA hybridization analysis also indicated low levels of relatedness with related species, as the highest value was observed with S. fuscigenes JBL-20T (28.8 %). The major fatty acids of the strain were anteiso-C15 : 0, a summed feature (consisting of C18 : 1 ω7c/C18 : 1 ω6c), iso-C15 : 0, C16 : 0 and C20 : 0. The major respiratory quinones were MK-9(H4) and MK-9(H6). The diagnostic polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositolmannoside. The major cell-wall diamino acid was ll-diaminopimelic acid, and the characteristic whole-cell sugars were glucose and ribose. The DNA G+C content was 72.1 mol%. Strain MMS17-BM035T exhibited antimicrobial activity against several Gram-positive bacteria and yeasts. Based on both phenotypic and phylogenetic evidences, strain MMS17-BM035T should be classified as representing a novel species, for which the name Streptomyces montanisoli sp. nov. (type strain=MMS17-BM035T=KCTC 49544T=JCM 34528T) is proposed.
-
-
-
Nocardioides alcanivorans sp. nov., a novel hexadecane-degrading species isolated from plastic waste
Strain NGK65T, a novel hexadecane degrading, non-motile, Gram-positive, rod-to-coccus shaped, aerobic bacterium, was isolated from plastic polluted soil sampled at a landfill. Strain NGK65T hydrolysed casein, gelatin, urea and was catalase-positive. It optimally grew at 28 °C, in 0–1% NaCl and at pH 7.5–8.0. Glycerol, d-glucose, arbutin, aesculin, salicin, potassium 5-ketogluconate, sucrose, acetate, pyruvate and hexadecane were used as sole carbon sources. The predominant membrane fatty acids were iso-C16:0 followed by iso-C17:0 and C18:1 ω9c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and hydroxyphosphatidylinositol. The cell-wall peptidoglycan type was A3γ, with ll-diaminopimelic acid and glycine as the diagnostic amino acids. MK 8 (H4) was the predominant menaquinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NGK65T belongs to the genus Nocardioides (phylum Actinobacteria ), appearing most closely related to Nocardioides daejeonensis MJ31T (98.6%) and Nocardioides dubius KSL-104T (98.3%). The genomic DNA G+C content of strain NGK65T was 68.2%. Strain NGK65T and the type strains of species involved in the analysis had average nucleotide identity values of 78.3–71.9% as well as digital DNA–DNA hybridization values between 22.5 and 19.7%, which clearly indicated that the isolate represents a novel species within the genus Nocardioides . Based on phenotypic and molecular characterization, strain NGK65T can clearly be differentiated from its phylogenetic neighbours to establish a novel species, for which the name Nocardioides alcanivorans sp. nov. is proposed. The type strain is NGK65T (=DSM 113112T=NCCB 100846T).
-
-
-
Streptomyces sennicomposti sp. nov., an actinomycete isolated from compost of Senna siamea (Lam.)
A member of the genus Streptomyces , designated RCPT1-4T, was isolated from compost of Senna siamea (Lam.), collected from an agricultural area in Rayong province, Thailand. The spore morphology and the presence of ll-diaminopimelic acid in the peptidoglycan indicate that RCPT1-4T shows the typical properties of members of the genus Streptomyces . On the basis of the results of 16S rRNA gene sequence analysis, the strain should be classified as representing a member of the genus Streptomyces and was most closely related to Streptomyces fumigatiscleroticus NBRC 12999T with the highest 16S rRNA gene sequence similarity of 99.2 %, followed by Streptomyces spiralis NBRC 14215T (99.0 %). In addition, RCPT1-4T shared the highest average nucleotide identity by blast (ANIb) (86.0 %), and digital DNA–DNA hybridization (dDDH) (32.1 %) values with S. spiralis NBRC 14215T. Furthermore, several physiological and biochemical differences were observed between RCPT1-4T and the closely related type strains of species with validly published names. These taxonomic data indicated that RCPT1-4T could be considered to represent a novel species of the genus Streptomyces and the name Streptomyces sennicomposti sp. nov. is proposed for this strain. The type strain is RCPT1-4T (=TBRC 11260T=NBRC 114303T).
-
-
-
Streptomyces liliifuscus sp. nov and an anti-ginger plague agent Streptomyces liliiviolaceus sp. nov, two novel species isolated from soil of Lilium lancifolium
Two novel strains of actinobacteria, ZYC-3T and BH-SS-21T, were isolated from Hunan Province, PR China. The fermentation broth of BH-SS-21T inhibited the rapid spread of ginger blast, unlike that of ZYC-3T. The taxonomic characteristics of ZYC-3T and BH-SS-21T were defined using a polyphasic approach. The analysis of the full-length 16S rRNA gene sequence revealed that ZYC-3T and BH-SS-21T represented members of the genus Streptomyces . ZYC-3T had less than 98.7% sequence similarities to all species of the genus Streptomyces , while BH-SS-21T exhibited 99.97, 98.95, 98.83, 98.82, 98.75 and less than 98.7% sequence similarities to 'Streptomyces dioscori' A217, Streptomyces ederensis JCM 4958T, Streptomyces glomeroaurantiacus NBRC 15418T, Streptomyces aurantiacus NBRC 13017T, Streptomyces umbrinus JCM 4521T and other species with validly published names in the genus Streptomyces . However, the digital DNA–DNA relatedness and average nucleotide identity values between ZYC-3T, BH-SS-21T, and their closely related strains were significantly lower than the recommended threshold values. Also, phenotypic, chemotaxonomic and genetic features distinguished ZYC-3T and BH-SS-21T from their reference strains. On the basis of their genotypic and phenotypic characteristics, strains ZYC-3T and BH-SS-21T were classified as representing novel species of the genus Streptomyces under the names Streptomyces liliifuscus sp. nov. ZYC-3T (=CICC 25040T=JCM 34560T=MCCC 1K04978T) and Streptomyces liliiviolaceus sp. nov. BH-SS-21T (=MCCC 1K06236T=JCM 34767T), respectively.
-
-
-
Occultella gossypii sp. nov., an alkali-resistant isolate from soil sampled in a cotton field
More LessA non-spore-forming, motile and alkali-resistant actinobacterium, designated N2-46T, was isolated from an alkaline soil sample collected from a cotton field in the Xinjiang region of PR China. Strain N2-46T formed creamy colonies on tryptone soy agar and managed to survive in extreme alkaline conditions at a pH value of 11. Strain N2-46T displayed the highest 16S rRNA gene similarity of 99.65 % to Haloactinobacterium kanbiaonis HY164T, followed by Occultella aeris F300T (99.61%) and Occultella glacieicola T3246-1T (98.54 %). 16S rRNA-directed phylogenetic analysis showed that strain N2-46T was embedded in a subclade with O. aeris F300T with a bootstrap value of 71.8 %. The phylogenetic tree based on core genes of genome sequences showed that strain N2-46T formed a unique subclade next to H. kanbiaonis HY164T and O. aeris F300T with a bootstrap value of 100 %. Digital DNA–DNA hybridization and the average nucleotide identity analyses showed that strain N2-46T displayed the highest values of 67.1 % (63.2–70.7 %) and 91.82 % with H. kanbiaonis HY164T, respectively. Comparative genomic analysis indicated that strain N2-46T and its three closest neighbours exhibited comparable distribution patterns in heavy metal resistance genes and biosynthetic gene clusters, while displaying distinctions probably related to ecological adaptation. MK-8(H4) was identified as the predominant isoprenoid quinone. The main fatty acids were identified as iso-C14 : 0 and anteiso-C15 : 0. Polar lipids are composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, mono and diacylated phosphatidylinositol dimannosides, as well as several uncharacterized polar lipid, glycolipid, and phospholipids. Genotypic and physiological analyses support the view that strain N2-46T (=JCM 34413T=CGMCC 1.18819T) should be classified as a novel species of the genus Occultella , for which the name Occultella gossypii sp. nov. is proposed.
-
- Archaea
-
-
Halorussus halobius sp. nov., Halorussus marinus sp. nov. and Halorussus pelagicus sp. nov., isolated from salted brown alga Laminaria
Dong Han and Heng-Lin CuiFour halophilic archaeal strains, designated HD8-83T, LYG-36T, DLLS-82 and RC-68T, were isolated from the salted brown alga Laminaria of three different origins (Dalian, Lianyungang, Dalian and Rongcheng) in PR China. All strains had pleomorphic rod cells that were motile, lysed in distilled water, stained Gram-negative, and formed red-pigmented colonies on agar plate (except for DLLS-82, which formed white colonies). Based on phylogenetic analyses of the 16S rRNA genes, strain HD8-83T was closely related to Halorussus litoreus HD8-51T (97.9 % similarity), strain LYG-36T and DLLS-82 to Halorussus rarus TBN4T (94.4 % and 94.7 % similarities, respectively), and strain RC-68T to Halorussus salinus YJ-37-HT (96.9 % similarity). Results of phylogenetic analyses based on rpoB′ genes and 728 concatenated single-copy orthologous clusters also showed that these strains formed three different branches and clustered tightly with the Halorussus members. The average nucleotide identity, average amino acid identity and in silico DNA–DNA hybridization values between strains LYG-36T and DLLS-82 were 98.9, 98 and 92.4%, showing that they were different strains of the same species. While those values between the isolates and other Halorussus members were below 84.7, 82.9 and 28.9 %, respectively. Based on the phenotypic, chemotaxonomic and phylogenetic properties, strains HD8-83T, LYG-36T, DLLS-82 and RC-68T represent three novel species of the genus Halorussus for which the names Halorussus halobius sp. nov. (type strain: HD8-83T=CGMCC 1.15334T=JCM 31110T), Halorussus marinus sp. nov. (type strain: LYG-36T=CGMCC 1.13606T=JCM 32952T; reference strain: DLLS-82=CGMCC 1.13604=JCM 32951) and Halorussus pelagicus sp. nov. (type strain: RC-68T=CGMCC 1.13609T=JCM 32953T) are proposed.
-
-
-
Halorhabdus amylolytica sp. nov. and Halorhabdus salina sp. nov., isolated from hypersaline environments
More LessTwo novel extremely halophilic archaeal strains, designated H27T and FL145T, were isolated from a salt mine and a kelp salt sample, respectively. Cells of both strains were Gram-stain-negative, motile and pleomorphic. The 16S rRNA and rpoB′ gene sequence similarities between strains H27T and FL145T were 96.60 and 88.77%. Strains H27T and FL145T were both closely related to Halorhabdus rudnickae WSM-64T, Halorhabdus tiamatea SARL4BT and Halorhabdus utahensis AX-2T, with a 16S rRNA gene sequence similarities of 98.14, 96.34 and 96.27% for strain H27T and 96.42, 95.82 and 96.17% for strain FL145T. The genome-based average nucleotide identity (ANI) values between strains H27T and FL145T, and these three species were 83.93, 79.79 and 79.09% (for strain H27T), and 78.32, 77.95 and 77.05% (for strain FL145T), respectively. The ANI value between strains H27T and FL145T was 78.65 %. The digital DNA–DNA hybridization values between strains H27T and FL145T, and these three species were less than 27.40%, which were below the recommended threshold for membership of the same species. The major polar lipids of both strains were found to consist of sulfated diglycosyl diether, triglycosyl diether, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol. The DNA G+C content was determined from genome to be 62.10 mol% for strain H27T and 61.51 mol% for strain FL145T. Based on phylogenetic, phenotypic, chemotaxonomic and genomic analyses, these two new isolates should be classified as representing two novel species in the genus Halorhabdus , with strain H27T (=CGMCC 1.16342T=NBRC 113589T) as the type strain of a new species for which we propose the name Halorhabdus amylolytica sp. nov., and strain FL145T (=CGMCC 1.13888T=NBRC 114260T) as the type strain of another new species for which we propose the name Halorhabdus salina sp. nov.
-
- Bacteroidetes
-
-
Sinomicrobium weinanense sp. nov., a halophilic bacterium isolated from saline-alkali soil
More LessA Gram-stain-negative, facultative anaerobic, non-motile, rod-shaped strain was isolated from saline-alkali soil collected in PR China, and it was designated as strain FJxs T . Its optimal growth was observed at 37–40 °C in the presence of 0–3 % (w/v) NaCl (pH 7.0). The major fatty acids of strain FJxs T were iso-C15 : 0, iso-C17 : 0 3OH, summed feature 3, C16 : 0 and iso-C15 : 1 G. The predominant respiratory quinone was menaquinone 6. The DNA G+C content of the strain was 45.18 mol%. Whole genome and 16S rRNA gene sequence analyses indicated that strain FJxs T exhibited 94.78 % sequence identity (the maximum) with Sinomicrobium soli N-1-3-6T, 94.36 % with Sinomicrobium pectinilyticum 5DNS001T, and 93.52 % with Sinomicrobium oceani SCSIO 03483T. Analyses of genotypic, phenotypic, phylogenetic and chemotaxonomic characteristics indicated that strain FJxs T represented a novel species of the genus Sinomicrobium . This novel species was named Sinomicrobium weinanense sp. nov. with its type strain as FJxs T (=CCTCC AB 2019251T=KCTC 72740T).
-
-
-
Pedobacter fastidiosus sp. nov., isolated from glacial habitats of maritime Antarctica
Strains P8930T and 478 were isolated from Antarctic glaciers located on James Ross Island and King George Island, respectively. They comprised Gram-stain-negative short rod-shaped cells forming pink pigmented colonies and exhibited identical 16S rRNA gene sequences and highly similar MALDI TOF mass spectra, and hence were assigned as representatives of the same species. Phylogenetic analysis based on 16S rRNA gene sequences assigned both isolates to the genus Pedobacter and showed Pedobacter frigidisoli and Pedobacter terrae to be their closest phylogenetic neighbours, with 97.4 and 97.2 % 16S rRNA gene sequence similarities, respectively. These low similarity values were below the threshold similarity value of 98.7%, confirming the delineation of a new bacterial species. Further genomic characterization included whole-genome sequencing accompanied by average nucleotide identity (ANI) and digital DNA–DNA hybridization calculations, and characterization of the genome features. The ANI values between P8930T and P. frigidisoli RP-3-11T and P. terrae DSM 17933T were 79.7 and 77.6 %, respectively, and the value between P. frigidisoli RP-3-11T and P. terrae DSM 17933T was 77.7 %, clearly demonstrating the phylogenetic distance and the novelty of strain P8930T. Further characterization included analysis of cellular fatty acids, quinones and polar lipids, and comprehensive biotyping. All the obtained results proved the separation of strains P8930T and 478 from the other validly named Pedobacter species, and confirmed that they represent a new species for which the name Pedobacter fastidiosus sp. nov. is proposed. The type strain is P8930T (=CCM 8938T=LMG 32098T).
-
-
-
Chitinophaga hostae sp. nov., isolated from the rhizosphere soil of Hosta plantaginea
A Gram-negative, rod-shaped aerobic bacterium designated as strain 2R12T was isolated from the rhizosphere soil of Hosta plantaginea. Phylogenetic analyses based on the 16S rRNA gene revealed that strain 2R12T should be assigned to the genus Chitinophaga with the highest sequence similarity to Chitinophaga arvensicola DSM 3695T (99.1 %) and Chitinophaga ginsengisegetis DSM 18108T (98.6 %). The major fatty acids of strain 2R12T (>10 %) were iso-C15 : 0, C16 :1 ω5c and iso-C17 : 0 3-OH. The major polar lipids were phosphatidylethanolamine, two unidentified aminolipids and five unidentified lipids. The predominant respiratory quinone was MK-7. The genomic DNA G+C content was 46.1 mol%. The average nucleotide identity values of strain 2R12T with C. arvensicola DSM 3695T and C. ginsengisegetis DSM 18108T were 77.9 and 78.8 %, respectively, while in silico DNA–DNA hybridization values for strain 2R12T with these strains were 22.8 and 23.3 %, respectively. Based on comparative analysis of phylogenetic, phylogenomic, phenotypic and chemotaxonomic characteristics, strain 2R12T represents a novel species in the genus Chitinophaga , for which the name Chitinophaga hostae sp. nov. is proposed. The type strain is 2R12T (=ACCC 61757T=JCM 34719T).
-
- Firmicutes and Related Organisms
-
-
Proteiniclasticum aestuarii sp. nov., isolated from tidal flat sediment, and emended descriptions of the genus Proteiniclasticum and Proteiniclasticum ruminis
More LessA novel bacterium, designated SCR006T, was isolated from tidal flat sediment from Suncheon Bay, Republic of Korea. Cells of strain SCR006T were strictly anaerobic, motile cocci, Gram-reaction-negative, and catalase- and oxidase-negative. Growth was observed at 4–41 °C (optimum, 34–37 °C), at pH 6.5–10.0 (optimum, pH 7.0–7.5) and in presence of 0–8 % NaCl (optimum, 0–2 %). Fermentation products of peptone–yeast–glucose medium were acetate and ethanol. Results of phylogenetic analyses based on 16S rRNA gene sequences indicated that strain SCR006T had high sequence similarity to Proteiniclasticum ruminis D3RC-2T (97.9 %), followed by Youngiibacter multivorans DSM 6139T (95.9 %) and Youngiibacter fragilis 232.1T (95.0 %). The average nucleotide identity value between strain SCR006T and P. ruminis DSM 24773T was 72.7 %, which strongly supported that strain SCR006T reresents a novel species within the genus Proteiniclasticum . The major cellular fatty acids are iso-C15 : 0 (27.2 %) and anteiso-C15 : 0 (16.9 %). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unidentified phospholipids, an unidentified aminolipid and five unidentified lipids. The genomic size was 3.2 Mb with genomic DNA G+C content of 45.6 mol%. The results of 16S rRNA-based and genome-based phylogenetic tree analyses indicated that SCR006T should be assigned to the genus Proteiniclasticum . Strain SCR006T could be distinguished from P. ruminis D3RC-2T by its growth conditions, cell morphology and genomic characteristics. Based on the phenotypic, phylogenetic, genomic and chemotaxonomic features, strain SCR006T represents a novel species, for which the name Proteiniclasticum aestuarii sp. nov. is proposed, with the type strain SCR006T (=KCTC 25245T= JCM 34531T)
-
-
-
Clostridium weizhouense sp. nov., an anaerobic bacterium isolated from activated sludge of petroleum wastewater
More LessA Gram-stain-positive, anaerobic, spore-forming, rod-shaped (0.4–0.6 µm×2.5–3.2 µm), flagellated bacterium, designated strain YB-6T, was isolated from activated sludge of an anaerobic tank at Weizhou marine oil mining wastewater treatment plant in Beihai, Guangxi, PR China. The culture conditions were 25–45 °C (optimum, 37 °C), pH 4–12 (pH 7.0) and NaCl concentration of 0–7 % w/v (0%). Strain YB-6T grew slowly in petroleum wastewater and removed 68.2 % of the total organic carbon in petroleum wastewater within 10 days. Concentrations of naphthalene, anthracene and phenanthrene at an initial concentration of 50 mg l−1 were reduced by 32.8, 40.4 and 14.6 %, respectively, after 7 days. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain YB-6T belongs to Clostridium cluster I and is most closely related to Clostridium uliginosum CK55T (98.5 % similarity). The genome size of strain YB-6T was 3.96 Mb, and the G+C content was 26.5 mol%. The average nucleotide identity value between strain YB-6T and C. uliginosum CK55T was 81.9 %. The major fatty acids in strain YB-6T were C14 : 0 FAME, C16 : 0 FAME and summed feature 4 (unknown 14.762 and/or C15 : 2 FAME). The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, five unidentified aminophospholipids, one unidentified glycolipid and one unidentified aminolipid. Diaminopimelic acid was not detected in the strain YB-6T cell walls. Whole-cell sugars mainly consisted of ribose and galactose. Based on the results of phenotypic and genotypic analyses, strain YB-6T represents a novel species of the genus Clostridium , for which the name Clostridium weizhouense sp. nov. is proposed. The type strain is YB-6T (=GDMCC 1.2529T=JCM 34754T).
-
-
-
Agrilactobacillus fermenti sp. nov. isolated from fermented vegetable residue
More LessA polyphasic taxonomic approach was used to characterize a Gram-stain-positive fermentative bacterium, designated strain CC-MHH1034T, isolated from a fermented vegetable residue. Cells of strain CC-MHH1034T were facultatively anaerobic, non-motile, and non-spore-forming rods, exhibiting positive catalase, oxidase and protease activities. Optimal growth occurred at 30 °С and pH 6.0. Strain CC-MHH1034T shared the highest 16S rRNA gene sequence similarities with Agrilactobacillus composti (95.9 %) followed by Agrilactobacillus yilanensis (95.1 %) and established a distinct taxonomic lineage associated with these species. Highest orthologous average nucleotide identity (OrthoANI) values were recorded for strain CC-MHH1034T versus Agrilactobacillus (71.1–71.6 %, n=2) followed by Ligilactobacillus (66.5–66.8 %, n=2), Lactobacillus (64.1–65.8 %, n=4). The mean digital DNA–DNA hybridization (dDDH) value obtained for strain CC-MHH1034T against Agrilactobacillus was 19.2–19.5 % (n=2). The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids, four unidentified glycolipids, four unidentified phospholipids and one unidentified lipid. The major polyamine was sym-homospermidine and meso-diaminopimelic acid was detected as the cell-wall peptidoglycan. The dominating cellular fatty acids (>5 %) included C16 : 0, iso-C15 : 0, anteiso-C15 : 0 and C18 : 1 ω9c. Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence, OrthoANI, dDDH, and the phylogenomic placement, strain CC-MHH1034T is considered to represent a novel species of the genus Agrilactobacillus , affiliated to the family Lactobacillaceae , for which the name Agrilactobacillus fermenti sp. nov. is proposed. The type strain is CC-MHH1034T (=BCRC 81220T=JCM 33476T).
-
-
-
Genome-based, phenotypic and chemotaxonomic classification of Faecalibacterium strains: proposal of three novel species Faecalibacterium duncaniae sp. nov., Faecalibacterium hattorii sp. nov. and Faecalibacterium gallinarum sp. nov.
More LessFaecalibacterium prausnitzii is one of the most important butyrate-producing bacteria in the human gut. Previous studies have suggested the presence of several phylogenetic groups, with differences at the species level, in the species, and a taxonomic re-evaluation is thus essential for further understanding of ecology of the important human symbiont. Here we examine the phenotypic, physiological, chemotaxonomic and phylogenomic characteristics of six F. prausnitzii strains (BCRC 81047T=ATCC 27768T, A2-165T=JCM 31915T, APC918/95b=JCM 39207, APC942/30−2=JCM 39208, APC924/119=JCM 39209 and APC922/41−1T=JCM 39210T) deposited in public culture collections with two reference strains of Faecalibacterium butyricigenerans JCM 39212T and Faecalibacterium longum JCM 39211T. Faecalibacterium sp. JCM 17207T isolated from caecum of broiler chicken was also included. Three strains of F. prausnitzii (BCRC 81047T, JCM 39207 and JCM 39209) shared more than 96.6 % average nucleotide identity (ANI) and 69.6 % digital DNA–DNA hybridization (dDDH) values, indicating that the three strains are members of the same species. On the other hand, the remaining three strains of F. prausnitzii (JCM 31915T, JCM 39208 and JCM 39210T) were clearly separated from the above three strains based on the ANI and dDDH values. Rather, JCM 39208 showed ANI and dDDH values over the cut-off values of species discrimination (>70 % dDDH and >95–96 % ANI) with F. longum JCM 39211T, whereas JCM 31915T, JCM 39210T and JCM 17207T did not share dDDH and ANI values over the currently accepted cut-off values with any of the tested strains, including among them. Furthermore, the cellular fatty acid patterns of these strains were slightly different from other F. prausnitzii strains. Based on the collected data, F. prausnitzii JCM 31915T, F. prausnitzii JCM 39210T and Faecalibacterium sp. JCM 17207T represent three novel species of the genus Faecalibacterium , for which the names Faecalibacterium duncaniae sp. nov. (type strain JCM 31915T=DSM 17677T=A2-165T), Faecalibacterium hattorii sp. nov. (type strain JCM 39210T=DSM 107841T=APC922/41-1T) and Faecalibacterium gallinarum sp. nov. (type strain JCM 17207T=DSM 23680T=ic1379T) are proposed.
-
- Other Bacteria
-
-
Halalkalibacterium roseum gen. nov., sp. nov., a new member of the family Balneolaceae isolated from soil
More LessA Gram-stain-negative, non-motile, moderately halophilic and facultatively anaerobic bacterium, designated YR4-1T, was isolated from a saline-alkali and sorghum-planting soil sample collected in Dongying, Shandong Province, PR China. Growth occurred at 28–45 °C with the presence of 4.0–20.0 % (w/v) NaCl and pH 6.0–9.0. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that YR4-1T shared the highest similarity of 92.1–92.4 % with the valid published species of Aliifodinibius . The isolate formed a separate clade at the genus level in recently described family Balneolaceae . The draft genome of strain YR4-1T is 3.83 Mbp long with 44.0 mol% G+C content. The strain possesses several genes involved in the osmotic stress response mechanism and diverse metabolic pathways, probably for the living in saline environment. This may lead to a better understanding of the underrepresented Balneolaceae lineage. The major menaquinone was MK-7. The main polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipids, aminophosphoglycolipid, one glycolipid, and four unidentified lipids. The predominant cellular fatty acids were iso-C15 : 0 (35.7 %) and anteiso-C15 : 0 (33.5 %). On the basis of its phenotypic, chemotaxonomic and phylogenetic features, strain YR4-1T represents a novel species of a new genus, for which the name Halalkalibacterium roseum gen. nov., sp. nov. is proposed. The type strain is YR4-1T (=CGMCC 1.17777T=KCTC 72795T).
-
- Proteobacteria
-
-
Pseudomonas rustica sp. nov., isolated from bulk tank raw milk at a German dairy farm
Here we present the description of a novel Pseudomonas species, designated Pseudomonas rustica sp. nov., which was isolated from raw milk samples obtained from Germany. Results of initial 16S rRNA gene sequence analysis assigned the strain into the genus Pseudomonas and showed Pseudomonas helmanticensis , Pseudomonas neuropathica and Pseudomonas atagonensis to be its closest relatives. Further studies including sequence analysis of the rpoB gene, multi-gene phylogenetic tree reconstruction, whole-genome sequence comparisons, cellular fatty acid analysis and chemotaxonomic characterization showed a clear separation from the known Pseudomonas species. Isolate MBT-4T was closely related to Pseudomonas helmanticensis , 'Pseudomonas crudilactis' and Pseudomonas neuropathica with average nucleotide identities based on blast values of 88.8, 88.8 and 88.6%, respectively. Therefore, the strain can be classified into the Pseudomonas koreensis subgroup of the Pseudomonas fluorescens group. The G+C content of strain MBT-4T was 58.9 mol%. The strain was catalase- and oxidase-positive, while the β-galactosidase reaction was negative. Growth occurred between 4 and 30 °C and at pH values from pH 6.0 to 8.0. In conclusion, strain MBT-4T belongs to a novel species, for which the name Pseudomonas rustica sp. nov. is proposed. The type strain is MBT-4T (=DSM 112348T=LMG 32241T) and strain MBT-17 is also a representative of this species.
-
Volumes and issues
-
Volume 74 (2024)
-
Volume 73 (2023)
-
Volume 72 (2022 - 2023)
-
Volume 71 (2020 - 2021)
-
Volume 70 (2020)
-
Volume 69 (2019)
-
Volume 68 (2018)
-
Volume 67 (2017)
-
Volume 66 (2016)
-
Volume 65 (2015)
-
Volume 64 (2014)
-
Volume 63 (2013)
-
Volume 62 (2012)
-
Volume 61 (2011)
-
Volume 60 (2010)
-
Volume 59 (2009)
-
Volume 58 (2008)
-
Volume 57 (2007)
-
Volume 56 (2006)
-
Volume 55 (2005)
-
Volume 54 (2004)
-
Volume 53 (2003)
-
Volume 52 (2002)
-
Volume 51 (2001)
-
Volume 50 (2000)
-
Volume 49 (1999)
-
Volume 48 (1998)
-
Volume 47 (1997)
-
Volume 46 (1996)
-
Volume 45 (1995)
-
Volume 44 (1994)
-
Volume 43 (1993)
-
Volume 42 (1992)
-
Volume 41 (1991)
-
Volume 40 (1990)
-
Volume 39 (1989)
-
Volume 38 (1988)
-
Volume 37 (1987)
-
Volume 36 (1986)
-
Volume 35 (1985)
-
Volume 34 (1984)
-
Volume 33 (1983)
-
Volume 32 (1982)
-
Volume 31 (1981)
-
Volume 30 (1980)
-
Volume 29 (1979)
-
Volume 28 (1978)
-
Volume 27 (1977)
-
Volume 26 (1976)
-
Volume 25 (1975)
-
Volume 24 (1974)
-
Volume 23 (1973)
-
Volume 22 (1972)
-
Volume 21 (1971)
-
Volume 20 (1970)
-
Volume 19 (1969)
-
Volume 18 (1968)
-
Volume 17 (1967)
-
Volume 16 (1966)
-
Volume 15 (1965)
-
Volume 14 (1964)
-
Volume 13 (1963)
-
Volume 12 (1962)
-
Volume 11 (1961)
-
Volume 10 (1960)
-
Volume 9 (1959)
-
Volume 8 (1958)
-
Volume 7 (1957)
-
Volume 6 (1956)
-
Volume 5 (1955)
-
Volume 4 (1954)
-
Volume 3 (1953)
-
Volume 2 (1952)
-
Volume 1 (1951)