1887

Abstract

A member of the genus , designated RCPT1-4, was isolated from compost of (Lam.), collected from an agricultural area in Rayong province, Thailand. The spore morphology and the presence of -diaminopimelic acid in the peptidoglycan indicate that RCPT1-4 shows the typical properties of members of the genus . On the basis of the results of 16S rRNA gene sequence analysis, the strain should be classified as representing a member of the genus and was most closely related to NBRC 12999 with the highest 16S rRNA gene sequence similarity of 99.2 %, followed by NBRC 14215 (99.0 %). In addition, RCPT1-4 shared the highest average nucleotide identity by (ANIb) (86.0 %), and digital DNA–DNA hybridization (dDDH) (32.1 %) values with NBRC 14215. Furthermore, several physiological and biochemical differences were observed between RCPT1-4 and the closely related type strains of species with validly published names. These taxonomic data indicated that RCPT1-4 could be considered to represent a novel species of the genus and the name sp. nov. is proposed for this strain. The type strain is RCPT1-4 (=TBRC 11260=NBRC 114303).

Funding
This study was supported by the:
  • King Mongkut’s Institute of Technology Ladkrabang Research Fund (Award RE-KRIS/005/64)
    • Principle Award Recipient: ChittiThawai
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005320
2022-04-21
2024-04-24
Loading full text...

Full text loading...

References

  1. Waksman SA, Henrici AT. The nomenclature and classification of the actinomycetes. J Bacteriol 1943; 46:337–341 [View Article] [PubMed]
    [Google Scholar]
  2. Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 2020; 70:5607–5612 [View Article] [PubMed]
    [Google Scholar]
  3. Kämpfer P et al. Genus Streptomyces. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K. eds Bergey’s Manual of Systematic Bacteriology, Vol 5. The Actinobacteria, Vol 2 New York: Springer; 2012 pp 1455–1767
    [Google Scholar]
  4. Williams ST, Goodfellow M, Alderson G. Genus Streptomyces Waksman and Henrici 1943, 339 AL. In Williams ST, Sharpe ME, Holt JG. eds Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins Baltimore: 1989 pp 2452–2492
    [Google Scholar]
  5. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  6. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  7. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article] [PubMed]
    [Google Scholar]
  8. Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J 2017; 11:2399–2406 [View Article] [PubMed]
    [Google Scholar]
  9. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article] [PubMed]
    [Google Scholar]
  10. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article] [PubMed]
    [Google Scholar]
  11. Teeling H, Meyerdierks A, Bauer M, Amann R, Glöckner FO. Application of tetranucleotide frequencies for the assignment of genomic fragments. Environ Microbiol 2004; 6:938–947 [View Article] [PubMed]
    [Google Scholar]
  12. Ōmura S. The search for bioactive compounds from microorganisms. In Omura S. eds Selection of Microbial Sources of Bioactive Compounds New York, NY: Springer; 1992 pp 281–302
    [Google Scholar]
  13. Bérdy J. Bioactive microbial metabolites. J Antibiot (Tokyo) 2005; 58:1–26 [View Article] [PubMed]
    [Google Scholar]
  14. Miao V, Davies J. Actinobacteria: the good, the bad, and the ugly. Antonie van Leeuwenhoek 2010; 98:143–150 [View Article] [PubMed]
    [Google Scholar]
  15. Epstein E. The Science of Composting Lancaster: Technomic publishing; 1997
    [Google Scholar]
  16. Vaz-Moreira I, Silva ME, Manaia CM, Nunes OC. Diversity of bacterial isolates from commercial and homemade composts. Microb Ecol 2008; 55:714–722 [View Article] [PubMed]
    [Google Scholar]
  17. Ventorino V, Ionata E, Birolo L, Montella S, Marcolongo L et al. Lignocellulose-adapted endo-cellulase producing Streptomyces strains for bioconversion of cellulose-based materials. Front Microbiol 2016; 7:2061 [View Article] [PubMed]
    [Google Scholar]
  18. Ting ASY, Hermanto A, Peh KL. Indigenous actinomycetes from empty fruit bunch compost of oil palm: Evaluation on enzymatic and antagonistic properties. Biocatalysis and Agricultural Biotechnology 2014; 3:310–315 [View Article]
    [Google Scholar]
  19. Yan X, Yan H, Liu Z, Liu X, Mo H et al. Nocardiopsis yanglingensis sp. nov., a thermophilic strain isolated from a compost of button mushrooms. Antonie van Leeuwenhoek 2011; 100:415–419 [View Article] [PubMed]
    [Google Scholar]
  20. Kim S-J, Tamura T, Hamada M, Ahn J-H, Weon H-Y et al. Compostimonas suwonensis gen. nov., sp. nov., isolated from spent mushroom compost. Int J Syst Evol Microbiol 2012; 62:2410–2416 [View Article]
    [Google Scholar]
  21. Wu H, Lian Y, Liu B, Ren Y, Qin P et al. Thermotunica guangxiensis gen. nov., sp. nov., isolated from mushroom residue compost. Int J Syst Evol Microbiol 2014; 64:1593–1599 [View Article]
    [Google Scholar]
  22. Wu H, Liu B, Pan S. Thermoactinomyces guangxiensis sp. nov., a thermophilic actinomycete isolated from mushroom compost. Int J Syst Evol Microbiol 2015; 65:2859–2864 [View Article] [PubMed]
    [Google Scholar]
  23. Wu H, Liu B. Nonomuraea thermotolerans sp. nov., a thermotolerant actinomycete isolated from mushroom compost. Int J Syst Evol Microbiol 2016; 66:894–900 [View Article] [PubMed]
    [Google Scholar]
  24. Wu H, Wei J, Liu B. Thermomonospora catenispora sp. nov., isolated from mushroom compost. Int J Syst Evol Microbiol 2019; 69:2465–2470 [View Article] [PubMed]
    [Google Scholar]
  25. Yabe S, Aiba Y, Sakai Y, Hazaka M, Yokota A. Thermasporomyces composti gen. nov., sp. nov., a thermophilic actinomycete isolated from compost. Int J Syst Evol Microbiol 2011; 61:86–90 [View Article]
    [Google Scholar]
  26. Hu L, Xia M, Gao X, Huo Y-X, Yang Y. Cellulosimicrobium composti sp. nov., a thermophilic bacterium isolated from compost. Int J Syst Evol Microbiol 2021; 71: [View Article] [PubMed]
    [Google Scholar]
  27. Zhang J, Zhang L. Improvement of an isolation medium for actinomycetes. MAS 2011; 5:124–127 [View Article]
    [Google Scholar]
  28. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  29. Tamaoka J. Determination of DNA base composition. In Goodfellow M, O’Donnell AG. eds Chemical Methods in Prokaryotic Systematics Chichester: John Wiley and Sons; 1994 pp 463–470
    [Google Scholar]
  30. Nakajima Y, Kitpreechavanich V, Suzuki K, Kudo T. Microbispora corallina sp. nov., a new species of the genus Microbispora isolated from Thai soil. Int J Syst Bacteriol 1999; 49:1761–1767 [View Article] [PubMed]
    [Google Scholar]
  31. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  32. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  33. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  34. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  35. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  36. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  37. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  38. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  39. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  40. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:9–75 [View Article] [PubMed]
    [Google Scholar]
  41. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–14 [View Article] [PubMed]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  43. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  44. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–73 [View Article] [PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  46. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 2021; 49:W29–W35 [View Article] [PubMed]
    [Google Scholar]
  47. The UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 2019; 47:D506–D515
    [Google Scholar]
  48. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E et al. Microbial genomic taxonomy. BMC Genomics 2013; 14:913 [View Article] [PubMed]
    [Google Scholar]
  49. Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  50. Waksman SA. The Actinomycetes Baltimore: Williams and Wilkins; 1961
    [Google Scholar]
  51. Kelly KL. Inter-Society Color Council–National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  52. Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  53. Arai T. Culture Media for Actinomycetes Tokyo: The Society for Actinomycetes Japan; 1975 pp 1–131
    [Google Scholar]
  54. Williams ST, Cross T. Actinomycetes. In Booth C. eds Methods in Microbiology vol 4 London: Academic Press;1971; pp 295–334
    [Google Scholar]
  55. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  56. Komagata K, Suzuki KI. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  57. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  58. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  59. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article] [PubMed]
    [Google Scholar]
  60. Tamaoka J, Katayama-Fujimura Y, Kuraishi H. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 1983; 54:31–36 [View Article]
    [Google Scholar]
  61. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101 Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  62. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  63. Wellington EMH, Stackebrandt E, Sanders D, Wolstrup J, Jorgensen NOG. Taxonomic status of Kitasatosporia, and proposed unification with Streptomyces on the basis of phenotypic and 16S rRNA analysis and emendation of Streptomyces Waksman and Henrici 1943, 339AL. Int J Syst Bacteriol 1992; 42:156–160 [View Article] [PubMed]
    [Google Scholar]
  64. Pridham TG, Hesseltine CW, Benedict RG. A guide for the classification of streptomycetes according to selected groups; placement of strains in morphological sections. Appl Microbiol 1958; 6:52–79 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005320
Loading
/content/journal/ijsem/10.1099/ijsem.0.005320
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error