1887

Abstract

A novel lignin-degrading actinobacterium, designated NEAU-G5, was isolated from pumpkin rhizosphere soil collected from field in Mudanjiang, Heilongjiang Province, northeast China, and characterized using polyphasic approach. The prior 16S rRNA gene sequence similarities and phylogenic analysis showed that strain NEAU-G5 exhibited close phylogenetic relatedness to NBRC 108239 (98.82 %), NBRC 15556 (98.75 %), NBRC 101359 (98.68 %) and RB20 (98.61 %). Morphological and chemotaxonomic characteristics indicated that strain NEAU-G5 could be assigned to the genus . The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid and an unidentified lipid. The predominant menaquinone was MK-8(H, ω-cycl). The major fatty acids (>10 %) were identified as C, C 9, 10-methyl C and C. Mycolic acids were present. The genomic DNA G+C content of strain NEAU-G5 was 68 mol%. Moreover, based on digital DNA–DNA hybridization and average nucleotide identity values, strain NEAU-G5 could be differentiated from its reference strains. In addition, an azure B plate decolorization test and genomic analysis indicated that strain NEAU-G5 had the ability to degrade lignin. On the basis of polyphasic characteristics, strain NEAU-G5 represents a novel species of the genus , with the name sp. nov. The type strain is NEAU-G5 (=CCTCC AA 2021018=DSM 110547).

Funding
This study was supported by the:
  • the Key Program of the National Natural Science Foundation of China (Award 32030090)
    • Principle Award Recipient: WenshengXiang
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005305
2022-04-12
2024-04-19
Loading full text...

Full text loading...

References

  1. Trevisan V. I Generi E Le Specie Delle Bacteriaceae Milan: Zanaboni & Gabuzzi; 1889
    [Google Scholar]
  2. Goodfellow M, Jones AL, Goodfellow M, Kämpfer P, Busse HJ et al. Order V. Corynebacteriales ord. nov. In Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol 5 New York: Springer; 2012 pp 235–243
    [Google Scholar]
  3. Goodfellow M, Maldonado LA. Genus I. Nocardia Trevisan 1889AL. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI. eds Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol 5 New York: Springer; 2012 pp 376–419
    [Google Scholar]
  4. Huang J-R, Ming H, Duan Y-Y, Li S, Zhang L-Y et al. Nocardia heshunensis sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 2017; 67:3467–3473 [View Article] [PubMed]
    [Google Scholar]
  5. Golinska P, Wang D, Goodfellow M. Nocardia aciditolerans sp. nov., isolated from a spruce forest soil. Antonie van Leeuwenhoek 2013; 103:1079–1088 [View Article] [PubMed]
    [Google Scholar]
  6. Kaewkla O, Franco CMM. Nocardia callitridis sp. nov., an endophytic actinobacterium isolated from a surface-sterilized root of an Australian native pine tree. Int J Syst Evol Microbiol 2010; 60:1532–1536 [View Article] [PubMed]
    [Google Scholar]
  7. Zhao G-Z, Li J, Zhu W-Y, Klenk H-P, Xu L-H et al. Nocardia artemisiae sp. nov., an endophytic actinobacterium isolated from a surface-sterilized stem of Artemisia annua L. Int J Syst Evol Microbiol 2011; 61:2933–2937 [View Article] [PubMed]
    [Google Scholar]
  8. Liu C, Guan X, Li Y, Li W, Ye L et al. Nocardia camponoti sp. nov., an actinomycete isolated from the head of an ant (Camponotus japonicas Mayr). Int J Syst Evol Microbiol 2016; 66:1900–1905 [View Article] [PubMed]
    [Google Scholar]
  9. Thawai C, Rungjindamai N, Klanbut K, Tanasupawat S. Nocardia xestospongiae sp. nov., isolated from a marine sponge in the Andaman Sea. Int J Syst Evol Microbiol 2017; 67:1451–1456 [View Article] [PubMed]
    [Google Scholar]
  10. Ding P, Bai J-L, Wang T-T, Sun Y, Cao C-L et al. Nocardia rhizosphaerihabitans sp. nov., a novel actinomycete isolated from a coastal soil. Int J Syst Evol Microbiol 2018; 68:192–197 [View Article] [PubMed]
    [Google Scholar]
  11. Lasker BA, Bell M, Klenk HP, Schumann P, Brown JM. Nocardia arizonensis sp. nov., obtained from human respiratory specimens. Antonie van Leeuwenhoek 2015; 108:1129–1137 [View Article] [PubMed]
    [Google Scholar]
  12. Zhao J, Han L, Yu M, Cao P, Li D et al. Characterization of Streptomyces sporangiiformans sp. nov., a novel soil actinomycete with antibacterial activity against Ralstonia solanacearum. Microorganisms 2019; 7:360 [View Article]
    [Google Scholar]
  13. Atlas RM. Handbook of microbiological media. Q Rev Biol 2006; 2:364–365
    [Google Scholar]
  14. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  15. Jin L, Zhao Y, Song W, Duan L, Jiang S et al. Streptomyces inhibens sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microbiol 2019; 69:688–695 [View Article] [PubMed]
    [Google Scholar]
  16. Waksman SA. The Actinomycetes. A summary of Current Knowledge New York: Ronald; 1967
    [Google Scholar]
  17. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949; 57:141–145 [View Article]
    [Google Scholar]
  18. Waksman SA. The Actinomycetes Baltimore: Williams and Wilkins; 1961 [View Article]
    [Google Scholar]
  19. Kelly KL. ISCC-NBS Color-name Charts Illustrated with Centroid Colors U.S. National Bureau of Standards; 1964
    [Google Scholar]
  20. Cao P, Li C, Tan K, Liu C, Xu X et al. Characterization, phylogenetic analyses, and pathogenicity of Enterobacter cloacae on rice seedlings in Heilongjiang Province, China. Plant Dis 2020; 104:1601–1609 [View Article] [PubMed]
    [Google Scholar]
  21. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. eds Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp 607–654
    [Google Scholar]
  22. Gordon RE, Barnett DA, Handerhan JE, Pang C-N. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin strain. Int J Syst Bacteriol 1974; 24:54–63 [View Article]
    [Google Scholar]
  23. Yokota A, Tamura T, Hasegawa T, Huang LH. Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order actinomycetales. Int J Syst Bacteriol 1993; 43:805–812
    [Google Scholar]
  24. CLSI Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes. Approved Standard M24-A Wayne, PA: Clinical and Laboratory Standards Institute; 2003
    [Google Scholar]
  25. Xu CY, Singh D, Dorgan KM, Zhang XY, Chen SL. Screening of ligninolytic fungi for biological pretreatment of lignocellulosic biomass. Can J Microbiol 2015; 61:745–752 [View Article] [PubMed]
    [Google Scholar]
  26. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM et al. A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 2000; 30:178–182 [View Article] [PubMed]
    [Google Scholar]
  27. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW. eds Actinomycete Taxonomy vol 6 Arlington: Society of Industrial Microbiology; 1980 pp 227–291
    [Google Scholar]
  28. Minnikin DE, Hutchinson IG, Caldicott AB, Goodfellow M. Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 1980; 188:221–233 [View Article]
    [Google Scholar]
  29. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  30. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. eds Chemical Methods in Bacterial Systematics London: Academic Press; 1985 pp 267–284
    [Google Scholar]
  31. Wu C, Lu X, Qin M, Wang Y, Ruan J. Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 1989; 16:176–178
    [Google Scholar]
  32. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014; 105:307–315 [View Article] [PubMed]
    [Google Scholar]
  33. Zhuang X, Peng C, Wang Z, Zhao J, Shen Y et al. Actinomadura physcomitrii sp. nov., a novel actinomycete isolated from moss [Physcomitrium sphaericum (Ludw) Fuernr]. Antonie van Leeuwenhoek 2020; 113:677–685 [View Article]
    [Google Scholar]
  34. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S et al. Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 2000; 50:2031–2036 [View Article] [PubMed]
    [Google Scholar]
  35. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  36. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article] [PubMed]
    [Google Scholar]
  37. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article] [PubMed]
    [Google Scholar]
  38. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article] [PubMed]
    [Google Scholar]
  39. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article] [PubMed]
    [Google Scholar]
  40. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article] [PubMed]
    [Google Scholar]
  41. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993; 10:512–526 [View Article] [PubMed]
    [Google Scholar]
  42. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  43. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article] [PubMed]
    [Google Scholar]
  44. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article] [PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun 2019; 10:2182 [View Article] [PubMed]
    [Google Scholar]
  46. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  47. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article] [PubMed]
    [Google Scholar]
  48. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Bacteriol 1987; 37:463–464 [View Article]
    [Google Scholar]
  49. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  50. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article] [PubMed]
    [Google Scholar]
  51. Levasseur A, Drula E, Lombard V, Coutinho PM, Henrissat B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 2013; 6:41 [View Article] [PubMed]
    [Google Scholar]
  52. Blánquez A, Ball AS, González-Pérez JA, Jiménez-Morillo NT, González-Vila F et al. Laccase SilA from Streptomyces ipomoeae CECT 3341, a key enzyme for the degradation of lignin from agricultural residues?. PLoS One 2017; 12:e0187649 [View Article] [PubMed]
    [Google Scholar]
  53. Benndorf R, Schwitalla JW, Martin K, Vollmers J, Kaster AK et al. Nocardia macrotermitis sp. nov. and Nocardia aurantia sp. nov., isolated from the gut of the fungus-growing termite Macrotermes natalensis. Int J Syst Evol Microbiol 2020; 70:5226–5234
    [Google Scholar]
  54. Cui QF, Wang LM, Huang Y, Liu ZH, Goodfellow M. Nocardia jiangxiensis sp. nov. and Nocardia miyunensis sp. nov., isolated from acidic soils. Int J Syst Evol Microbiol 2005; 55:1921–1925 [View Article]
    [Google Scholar]
  55. Kumar V, Bisht GS, Gusain O. Terrestrial actinomycetes from diverse locations of Uttarakhnad, India: Isolation and screening for their antibacterial activity. Iran J Microbiol 2013; 5:299–308 [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005305
Loading
/content/journal/ijsem/10.1099/ijsem.0.005305
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error