1887

Abstract

A Gram-stain-negative, non-motile, moderately halophilic and facultatively anaerobic bacterium, designated YR4-1, was isolated from a saline-alkali and sorghum-planting soil sample collected in Dongying, Shandong Province, PR China. Growth occurred at 28–45 °C with the presence of 4.0–20.0 % (w/v) NaCl and pH 6.0–9.0. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that YR4-1 shared the highest similarity of 92.1–92.4 % with the valid published species of . The isolate formed a separate clade at the genus level in recently described family . The draft genome of strain YR4-1 is 3.83 Mbp long with 44.0 mol% G+C content. The strain possesses several genes involved in the osmotic stress response mechanism and diverse metabolic pathways, probably for the living in saline environment. This may lead to a better understanding of the underrepresented lineage. The major menaquinone was MK-7. The main polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipids, aminophosphoglycolipid, one glycolipid, and four unidentified lipids. The predominant cellular fatty acids were iso-C (35.7 %) and anteiso-C (33.5 %). On the basis of its phenotypic, chemotaxonomic and phylogenetic features, strain YR4-1 represents a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain is YR4-1 (=CGMCC 1.17777=KCTC 72795).

Funding
This study was supported by the:
  • Ministry of Science and Technology of the People's Republic of China (Award No. 2019FY100700)
    • Principle Award Recipient: DuohongSheng
  • National Natural Science Foundation of China (Award Nos. 32070030 and 31670076)
    • Principle Award Recipient: Yue-zhongLi
  • Ministry of Science and Technology of the People's Republic of China (Award No. 2017FY100302)
    • Principle Award Recipient: Yue-zhongLi
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.005339
2022-04-28
2024-04-23
Loading full text...

Full text loading...

References

  1. Xia J, Ling SK, Wang XQ, Chen GJ, Du ZJ. Aliifodinibius halophilus sp. nov., a moderately halophilic member of the genus Aliifodinibius, and proposal of Balneolaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:2225–2233 [View Article]
    [Google Scholar]
  2. Urios L, Agogué H, Lesongeur F, Stackebrandt E, Lebaron P. Balneola vulgaris gen. nov., sp. nov., a member of the phylum Bacteroidetes from the north-western Mediterranean Sea. Int J Syst Evol Microbiol 2006; 56:1883–1887 [View Article]
    [Google Scholar]
  3. Choi DH, Zhang GI, Noh JH, Kim W-S, Cho BC. Gracilimonas tropica gen. nov., sp. nov., isolated from a Synechococcus culture. Int J Syst Evol Microbiol 2009; 59:1167–1172 [View Article]
    [Google Scholar]
  4. Wang Y-X, Liu J-H, Xiao W, Zhang X-X, Li Y-Q et al. Fodinibius salinus gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt mine. Int J Syst Evol Microbiol 2012; 62:390–396 [View Article]
    [Google Scholar]
  5. Wang Y-X, Liu J-H, Xiao W, Ma X-L, Lai Y-H et al. Aliifodinibius roseus gen. nov., sp. nov., and Aliifodinibius sediminis sp. nov., two moderately halophilic bacteria isolated from salt mine samples. Int J Syst Evol Microbiol 2013; 63:2907–2913 [View Article]
    [Google Scholar]
  6. Xia J, Xie ZH, Dunlap CA, Rooney AP, Du ZJ. Rhodohalobacter halophilus gen. nov., sp. nov., a moderately halophilic member of the family Balneolaceae. Int J Syst Evol Microbiol 2017; 67:1281–1287 [View Article] [PubMed]
    [Google Scholar]
  7. Wang TJ, Liu ZW, Feng X, Zou QH, Du ZJ. Rhodohalobacter mucosus sp. nov., isolated from a marine solar saltern. Arch Microbiol 2021; 203:2419–2424 [View Article] [PubMed]
    [Google Scholar]
  8. Cho Y, Chung H, Jang GI, Choi DH, Noh JH et al. Gracilimonas rosea sp. nov., isolated from tropical seawater, and emended description of the genus Gracilimonas. Int J Syst Evol Microbiol 2013; 63:4006–4011 [View Article] [PubMed]
    [Google Scholar]
  9. Urios L, Intertaglia L, Lesongeur F, Lebaron P. Balneola alkaliphila sp. nov., a marine bacterium isolated from the Mediterranean Sea. Int J Syst Evol Microbiol 2008; 58:1288–1291 [View Article]
    [Google Scholar]
  10. Wang Y-X, Li Y-P, Liu J-H, Xiao W, Lai Y-H et al. Gracilimonas mengyeensis sp. nov., a moderately halophilic bacterium isolated from a salt mine in Yunnan, south-western China. Int J Syst Evol Microbiol 2013; 63:3989–3993 [View Article] [PubMed]
    [Google Scholar]
  11. Cho GY, Lee JC, Whang KS. Aliifodinibius salicampi sp. nov., a moderately halophilic bacterium isolated from a grey saltern. Int J Syst Evol Microbiol 2017; 67:2598–2603 [View Article]
    [Google Scholar]
  12. Cho GY, Whang KS. Aliifodinibius saliphilus sp. nov., a moderately halophilic bacterium isolated from sediment of a crystallizing pond of a saltern. Int J Syst Evol Microbiol 2020; 70:358–363 [View Article]
    [Google Scholar]
  13. Wu YH, Yan J, Fang C, Huo YY, Ma WL et al. Gracilimonas amylolytica sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2018; 68:1713–1718 [View Article]
    [Google Scholar]
  14. Han SB, Yu YH, Ju Z, Li Y, Zhang R. Rhodohalobacter barkolensis sp. nov., isolated from a saline lake and emended description of the genus Rhodohalobacter. Int J Syst Evol Microbiol 2018; 68:1949–1954 [View Article]
    [Google Scholar]
  15. Zhao X, Miao S, Sun Y, Gong Q, Zhao J. Aliifodinibius salipaludis sp. nov., isolated from saline-alkaline soil. Curr Microbiol 2020; 77:1328–1333 [View Article]
    [Google Scholar]
  16. Sun JP, Liu YH, Zuo YM, Han ML, Zhang HW et al. The bacterial community structure and function of Suaeda salsa rhizosphere soil. Chin J Eco-Agri 2020; 28:1618–1629 [View Article]
    [Google Scholar]
  17. Su H, Mi SF, Peng XW, Han YJ. The mutual influence between corrosion and the surrounding soil microbial communities of buried petroleum pipelines. RSC Adv 2019; 9:18930–18940 [View Article]
    [Google Scholar]
  18. Muwawa EM, Obieze CC, Makonde HM, Jefwa JM, Kahindi JHP et al. 16S rRNA gene amplicon-based metagenomic analysis of bacterial communities in the rhizospheres of selected mangrove species from Mida Creek and Gazi Bay, Kenya. PLoS One 2021; 16:e0248485 [View Article] [PubMed]
    [Google Scholar]
  19. Wang J, Wang J, Zhang Z, Li Z, Zhang Z et al. Shifts in the bacterial population and ecosystem functions in response to vegetation in the Yellow River Delta Wetlands. mSystems 2020; 5:e00412–20 [View Article]
    [Google Scholar]
  20. Wu S-G, Wang J-J, Wang J-N, Chen Q, Sheng D-H et al. Psychroflexus aurantiacus sp. nov., isolated from soil in the Yellow River Delta wetlands. Int J Syst Evol Microbiol 2020; 70:6284–6293 [View Article] [PubMed]
    [Google Scholar]
  21. Dong XZ. Chapter 14. Determination of biochemical characteBiochemical Characteristics. In Manual for the Systematic Identification of General Bacteria Beijing: Science Press (in Chinese); 2001 pp 370–398
    [Google Scholar]
  22. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. eds Nucleic Acid Techniques in Bacterial Systematics New York: Wiley; 1991 pp 115–175
    [Google Scholar]
  23. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article] [PubMed]
    [Google Scholar]
  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article] [PubMed]
    [Google Scholar]
  25. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  26. Felsenstein J. Confdence limits on phylogenies an approach. Evolution 1985783–791
    [Google Scholar]
  27. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article]
    [Google Scholar]
  28. Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 2015; 13:321–331 [View Article] [PubMed]
    [Google Scholar]
  29. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  30. Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics 2005; 21:537–539 [View Article] [PubMed]
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  32. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article]
    [Google Scholar]
  33. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  35. Rodriguez-R LM, Konstantinidis KT. Bypassing cultivation to identify bacterial species. Microbe Magazine 2014; 9:111–118 [View Article]
    [Google Scholar]
  36. Claus D. A standardized gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article]
    [Google Scholar]
  37. Yan LE, Wang JJ, Chen ZR, Guan YY, Li J. Microbacterium nanhaiense sp. nov., an actinobacterium isolated from sea sediment. Int J Syst Evol Microbiol 2015; 65:3697–3702 [View Article] [PubMed]
    [Google Scholar]
  38. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  39. Du ZJ, Wang ZJ, Zhao JX, Chen GJ. Woeseia oceani gen. nov., sp. nov., a chemoheterotrophic member of the order Chromatiales, and proposal of Woeseiaceae fam. nov. Int J Syst Evol Microbiol 2016; 66:107–112 [View Article] [PubMed]
    [Google Scholar]
  40. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 2006; 5:2359–2367 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.005339
Loading
/content/journal/ijsem/10.1099/ijsem.0.005339
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error