- Volume 161, Issue 10, 2015
Volume 161, Issue 10, 2015
- Cell Biology
-
-
-
Further characterization of the role of the mitochondrial high-mobility group box protein in the intracellular redox environment of Aspergillus nidulans
More LessHmbB, a predominantly mitochondrial high-mobility group box (HMGB) protein, of Aspergillus nidulans affects diverse biological activities, such as sterigmatocystin production, the maintenance of mitochondrial DNA copy number, germination of asexual and sexual spores, and protection against oxidative stress agents. We hypothesized that the latter correlates with an unbalanced intracellular redox state, in which case, a not yet fully characterized physiological function could be attributed to this mitochondrial HMGB protein. Here, we studied the intracellular redox environment and oxidative stress tolerance in hmbB + and hmbBΔ strains under normal and oxidative stress conditions by measuring glutathione redox couple, intracellular reactive oxygen species (ROS) content and ROS-protecting enzyme activities. Our results revealed that the intracellular redox environment is different in hmbBΔ conidia and mycelia from that of hmbB +, and shed light on the seemingly contradictory difference in the tolerance of hmbBΔ mycelia to diamide and menadione oxidative stressors.
-
-
-
-
An electron transfer flavoprotein is essential for viability and its depletion causes a rod-to-sphere change in Burkholderia cenocepacia
More LessEssential gene studies often reveal novel essential functions for genes with dispensable homologues in other species. This is the case with the widespread family of electron transfer flavoproteins (ETFs), which are required for the metabolism of specific substrates or for symbiotic nitrogen fixation in some bacteria. Despite these non-essential functions high-throughput screens have identified ETFs as putatively essential in several species. In this study, we constructed a conditional expression mutant of one of the ETFs in Burkholderia cenocepacia, and demonstrated that its expression is essential for growth on both complex media and a variety of single-carbon sources. We further demonstrated that the two subunits EtfA and EtfB interact with each other, and that cells depleted of ETF are non-viable and lack redox potential. These cells also transition from the short rods characteristic of Burkholderia cenocepacia to small spheres independently of MreB. The putative membrane partner ETF dehydrogenase also induced the same rod-to-sphere change. We propose that the ETF of Burkholderia cenocepacia is a novel antibacterial target.
-
- Environmental Biology
-
-
-
Metabarcoding analysis of home composts reveals distinctive fungal communities with a high number of unassigned sequences
More LessHome composting has been strongly advocated in the UK, Europe and North America to divert organic waste away from conventional waste processing. Despite this, little attention has been given to microbial communities and their diversity in these systems. In this study, we examined the diversity of fungal species in 10 different domestic composts by 454 tag-encoded pyrosequencing. We report the recovery of 478 different molecular operational taxonomic units (MOTUs) from the 10 composts with a mean of 176.7 ± 19.6 MOTUs per compost and a mean of 12.9 ± 3.8 unique MOTUs per sample. Microascales (17.21 %), Hypocreales (16.76 %), Sordariales (14.89 %), Eurotiales (11.25 %) and Mortierellales (7.38 %) were the dominant orders in the community, with Pseudallescheria (9.52 %), Penicillium (8.43 %), Mortierella (3.60 %) and Fusarium (3.31 %) being the most abundant genera. Fungal communities in home composts were substantially different to large-scale commercial composts, with thermophilic and thermotolerant fungi present in much lower numbers. Significantly, 46.2 % of all sequences were identified as uncultured fungi or could not be assigned above the family level, suggesting there are a high number of new genera and species in these environments still to be described.
-
-
-
-
Calcium is required for ixotrophy of Aureispira sp. CCB-QB1
More LessIxotrophy is a process that enables certain microbes to prey on other cells. The ability of cells to aggregate or adhere is thought to be a significant initial step in ixotrophy. The gliding, multicellular filamentous bacterium Aureispira sp. CCB-QB1 belongs to the family Saprospiraceae and preys on bacteria such as Vibrio sp. in seawater. Adhesion and cell aggregation were coincident with preying and were hypothesized to play an important role in the ixotrophy in this bacterium. To test this hypothesis, experiments to elucidate the mechanisms of aggregation or adhesion in this bacterium were performed. The ability of Aureispira QB1 to adhere and aggregate to prey bacterium, Vibrio sp., required divalent cations, especially calcium ions. In the presence of calcium, Aureispira QB1 cells captured 99 % of Vibrio sp. cells after 60 min of incubation. Toluidine blue O, which binds acidic polysaccharides, bound to Aureispira QB1 and inhibited adhesion of Aureispira QB1. These results suggest that acidic polysaccharides are needed for aggregation or adhesion of Aureispira and that calcium ions play a significant role in these phenomena.
-
- Genomics and Systems Biology
-
-
-
Development of a markerless gene deletion system for Bacillus subtilis based on the mannose phosphoenolpyruvate-dependent phosphotransferase system
More LessTo optimize Bacillus subtilis as a production strain for proteins and low molecular substances by genome engineering, we developed a markerless gene deletion system. We took advantage of a general property of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), in particular the mannose PTS. Mannose is phosphorylated during uptake by its specific transporter (ManP) to mannose 6-phosphate, which is further converted to fructose 6-phosphate by the mannose-6-phosphate isomerase (ManA). When ManA is missing, accumulation of the phosphorylated mannose inhibits cell growth. This system was constructed by deletion of manP and manA in B. subtilis Δ6, a 168 derivative strain with six large deletions of prophages and antibiotic biosynthesis genes. The manP gene was inserted into an Escherichia coli plasmid together with a spectinomycin resistance gene for selection in B. subtilis. To delete a specific region, its up- and downstream flanking sites (each of approximately 700 bp) were inserted into the vector. After transformation, integration of the plasmid into the chromosome of B. subtilis by single cross-over was selected by spectinomycin. In the second step, excision of the plasmid was selected by growth on mannose. Finally, excision and concomitant deletion of the target region were verified by colony PCR. In this way, all nine prophages, seven antibiotic biosynthesis gene clusters and two sigma factors for sporulation were deleted and the B. subtilis genome was reduced from 4215 to 3640 kb. Despite these extensive deletions, growth rate and cell morphology remained similar to the B. subtilis 168 parental strain.
-
-
- Host-Microbe Interaction
-
-
-
Evaluation of mucositis induced by irinotecan after microbial colonization in germ-free mice
Mucositis is one of the most debilitating side effects of chemotherapy and some previous studies suggest a role for indigenous microbiota in the course of this pathology. Therefore, the aim of our study was to evaluate the differences in phenotype between germ-free (GF) and conventional (CV) mice, and the role of β-glucuronidase-producing bacteria in the development of irinotecan treatment in a murine model. After mucositis induction, CV mice showed a significant increase in all inflammatory parameters when compared to GF mice. CV animals also showed more lesions of the intestinal epithelium, coherent with their higher intestinal permeability. The conventionalization of GF animals reversed their phenotype to that found in CV mice. In addition, gnotobiotic mice monoassociated with an Escherichia coli strain producing β-glucuronidase showed an increased permeability when compared to gnotobiotic mice monoassociated with an E. coli strain deleted for the gene encoding β-glucuronidase, but these did not show any differences in the influx of neutrophils, eosinophils or histological characteristics. Our data confirmed that components of the gut microbiota are involved in the signs of mucositis. Nevertheless, other mechanisms than this enzyme are involved in the irinotecan treatment, since the monoassociation was not able to restore the entire phenotype observed in the CV animals with irinotecan treatment in our murine model.
-
-
-
-
Phenotypic characterization of an international Pseudomonas aeruginosa reference panel: strains of cystic fibrosis (CF) origin show less in vivo virulence than non-CF strains
Louise Cullen, Rebecca Weiser, Tomasz Olszak, Rita F. Maldonado, Ana S. Moreira, Lisa Slachmuylders, Gilles Brackman, Tsvetelina S. Paunova-Krasteva, Paulina Zarnowiec, Grzegorz Czerwonka, James Reilly, Pavel Drevinek, Wieslaw Kaca, Oto Melter, Anthony De Soyza, Audrey Perry, Craig Winstanley, Stoyanka R. Stoitsova, Rob Lavigne, Eshwar Mahenthiralingam, Isabel Sá-Correia, Tom Coenye, Zuzanna Drulis-Kawa, Daria Augustyniak, Miguel A. Valvano and Siobhán McCleanPseudomonas aeruginosa causes chronic lung infections in people with cystic fibrosis (CF) and acute opportunistic infections in people without CF. Forty-two P. aeruginosa strains from a range of clinical and environmental sources were collated into a single reference strain panel to harmonise research on this diverse opportunistic pathogen. To facilitate further harmonized and comparable research on P. aeruginosa, we characterized the panel strains for growth rates, motility, virulence in the Galleria mellonella infection model, pyocyanin and alginate production, mucoid phenotype, LPS pattern, biofilm formation, urease activity, and antimicrobial and phage susceptibilities. Phenotypic diversity across the P. aeruginosa panel was apparent for all phenotypes examined, agreeing with the marked variability seen in this species. However, except for growth rate, the phenotypic diversity among strains from CF versus non-CF sources was comparable. CF strains were less virulent in the G. mellonella model than non-CF strains (P = 0.037). Transmissible CF strains generally lacked O-antigen, produced less pyocyanin and had low virulence in G. mellonella. Furthermore, in the three sets of sequential CF strains, virulence, O-antigen expression and pyocyanin production were higher in the earlier isolate compared to the isolate obtained later in infection. Overall, this full phenotypic characterization of the defined panel of P. aeruginosa strains increases our understanding of the virulence and pathogenesis of P. aeruginosa and may provide a valuable resource for the testing of novel therapies against this problematic pathogen.
-
- Physiology and Metabolism
-
-
-
Purification, characterization and synergism in autolysis of a group of 1,3-β-glucan hydrolases from the pilei of Coprinopsis cinerea fruiting bodies
More LessUsing a combined chromatography method, we simultaneously purified three protein fractions (II-2, II-3 and II-4) with 1,3-β-glucanase activity from extraction of pilei of Coprinopsis cinerea fruiting bodies. MALDI-TOF/TOF amino acid sequencing showed that these three fractions matched a putative exo-1,3-β-glucanase, a putative glucan 1,3-β-glucosidase and a putative glycosyl hydrolase family 16 protein annotated in the C. cinerea genome, respectively; however, they were characterized as a 1,3-β-glucosidase, an exo-1,3-β-glucanase and an endo-1,3-β-glucanase, respectively, by analysis of their substrate specificities and modes of action. This study explored how these three 1,3-β-glucoside hydrolases synergistically acted on laminarin: the endo-1,3-β-glucanase hydrolysed internal glycosidic bonds of laminarin to generate 1,3-β-oligosaccharides of various lengths, the exo-1,3-β-glucanase cleaved the longer-chain laminarioligosaccharides into short-chain disaccharides, laminaribiose and gentiobiose, and the 1,3-β-glucosidase further hydrolysed laminaribiose to glucose. The remaining gentiobiose must be hydrolysed by other 1,6-β-glucosidases. Therefore, the endo-1,3-β-glucanase, exo-1,3-β-glucanase and 1,3-β-glucosidase may act synergistically to completely degrade the 1,3-β-glucan backbone of the C. cinerea cell wall during fruiting body autolysis. These three 1,3-β-glucoside hydrolases share a similar optimum pH and optimum temperature, supporting the speculation that these enzymes work together under the same conditions to degrade 1,3-β-glucan in the C. cinerea cell wall during fruiting body autolysis.
-
-
-
-
Modulation of the Lactobacillus acidophilus La-5 lipidome by different growth conditions
More LessProbiotics are bacteria used in the food industry due to their potential health benefits. In this study, the plasma membrane of the probiotic Lactobacillus acidophilus La-5 was investigated using state-of-the-art high-resolution shotgun lipidomics. Comparisons of the lipidome of the plasma membrane were done after altering the fatty acid composition by supplementing L. acidophilus La-5 with saturated, mono-, di- and tri-unsaturated fatty acids during fermentation. The plasma membrane with the highest degree of saturation resulted in a lipid composition with the highest proportion of cardiolipin (CL) and lowest proportion of monolysocardiolipin (MLCL). No significant changes were found for other lipid classes. The bacteria grown with di- and tri-unsaturated fatty acids were expected to have more unsaturated plasma membranes than bacteria grown with mono-unsaturated fatty acids. This was also the case for MLCL, but the numbers of double bonds for CL were quite similar for these three samples. The results indicate that L. acidophilus La-5 possesses a molecular mechanism for remodelling and optimizing the fatty acid composition of CL and MLCL species and the molar ratio of CL and MLCL. This study contributes new knowledge on the previously uninvestigated lipidome of L. acidophilus La-5.
-
-
-
The bactericidal activity of β-lactam antibiotics is increased by metabolizable sugar species
More LessHere, the influence of metabolizable sugars on the susceptibility of Escherichia coli to β-lactam antibiotics was investigated. Notably, monitoring growth and survival of mono- and combination-treated planktonic cultures showed a 1000- to 10 000-fold higher antibacterial efficacy of carbenicillin and cefuroxime in the presence of certain sugars, whereas other metabolites had no effect on β-lactam sensitivity. This effect was unrelated to changes in growth rate. Light microscopy and flow cytometry profiling revealed that bacterial filaments, formed due to β-lactam-mediated inhibition of cell division, rapidly appeared upon β-lactam mono-treatment and remained stable for up to 18 h. The presence of metabolizable sugars in the medium did not change the rate of filamentation, but led to lysis of the filaments within a few hours. No lysis occurred in E. coli mutants unable to metabolize the sugars, thus establishing sugar metabolism as an important factor influencing the bactericidal outcome of β-lactam treatment. Interestingly, the effect of sugar on β-lactam susceptibility was suppressed in a strain unable to synthesize the nutrient stress alarmone (p)ppGpp. Here, to the best of our knowledge, we demonstrate for the first time a specific and significant increase in β-lactam sensitivity due to sugar metabolism in planktonic, exponentially growing bacteria, unrelated to general nutrient availability or growth rate. Understanding the mechanisms underlying the nutritional influences on antibiotic sensitivity is likely to reveal new proteins or pathways that can be targeted by novel compounds, adding to the list of pharmacodynamic adjuvants that increase the efficiency and lifespan of conventional antibiotics.
-
-
-
Occurrence of FFZ genes in yeasts and correlation with fructophilic behaviour
More LessFructophily has been described in yeasts as the ability to utilize fructose preferentially when fructose and glucose are available in the environment. In Zygosaccharomyces bailii and Zygosaccharomyces rouxii, fructophilic behaviour has been associated with the presence of a particular type of high-capacity and low-affinity fructose transporters designated Ffz. In this study, a PCR screening was performed in several yeasts using degenerate primers suitable to detect FFZ-like genes. In parallel, fructophilic character was evaluated in the same strains by comparing the relative consumption rate of fructose and glucose. For all the strains in which FFZ-like genes were detected, fructophilic behaviour was observed (25 strains). Results show that FFZ genes are ubiquitous in the Zygosaccharomyces and Starmerella clades. Strains of Lachancea fermentati, Torulaspora microellipsoides and Zygotorulaspora florentina were not fructophilic and did not harbour FFZ genes. It is of note that these new species were recently removed by taxonomists from the Zygosaccharomyces clade, supporting the view that the presence of FFZ-like genes is a main characteristic of Zygosaccharomyces. Among the strains tested, only Hanseniaspora guilliermondii NCYC2380 was an exception, having a preference for fructose in medium with high sugar concentrations, despite no FFZ-like genes being detected in the screening. Furthermore, this study supports the previous idea of the emergence of a new family of hexose transporters (Ffz facilitators) distinct from the Sugar Porter family.
-
- Regulation
-
-
-
Transfer-messenger RNA and SmpB mediate bacteriostasis in Escherichia coli cells against tRNA cleavage
RNAs, such as mRNA, rRNA and tRNA, are essential macromolecules for cell survival and maintenance. Any perturbation of these molecules, such as by degradation or mutation, can be toxic to cells and may occasionally induce cell death. Therefore, cells have mechanisms known as quality control systems to eliminate abnormal RNAs. Although tRNA is a stable molecule, the anticodon loop is quite susceptible to tRNA-targeting RNases such as colicin E5 and colicin D. However, the mechanism underlying cellular reaction to tRNA cleavage remains unclear. It had long been believed that tRNA cleavage by colicins E5 and D promptly induces cell death because colony formation of the sensitive cells is severely reduced; this indicates that cells do not resist the tRNA cleavage. Here, we show that Escherichia coli cells enter a bacteriostatic state against the tRNA cleavage of colicins D and E5. The bacteriostasis requires small protein B (SmpB) and transfer-messenger RNA (tmRNA), which are known to mediate trans-translation. Furthermore, another type of colicin, colicin E3 cleaving rRNA, immediately reduces the viability of sensitive cells. Moreover, nascent peptide degradation has an additive effect on bacteriostasis. Considering the recent observation that tRNA cleavage may be used as a means of cell-to-cell communication, tRNA cleavage could be used by bacteria not only to dominate other bacteria living in the same niche, but also to regulate growth of their own or other cells.
-
-
-
-
Inefficient translation of nsrR constrains behaviour of the NsrR regulon in Escherichia coli
More LessThe NsrR protein of Escherichia coli is a transcriptional repressor that contains an [Fe–S] cluster that is the binding site for nitric oxide (NO). Reaction of NsrR with NO leads to de-repression of its target genes, which include those encoding an NO scavenging flavohaemoglobin and the RIC (repair of iron centres) protein involved in the repair of NO-damaged [Fe–S] clusters. The nsrR gene is promoter proximal in a transcription unit with rnr, encoding the cold shock-inducible RNase R. Here, we show that nsrR is expressed from a strong promoter, but that its translation is extremely inefficient, leading to a low cellular NsrR concentration. Conversion of the nsrR start codon from the wild-type GUG to AUG increased the efficiency of translation (which, nevertheless, remained extremely low) and had measurable effects on the expression of some NsrR-regulated genes. We conclude that NsrR abundance in the cell is such that promoters with low-affinity NsrR binding sites may partially escape NsrR-mediated repression. Expression profiling confirmed that genes regulated by NsrR (whether directly or indirectly) tend to express lower mRNA levels when the nsrR start codon is AUG than when it is GUG. Transcriptomics data implicated the pyruvate oxidase gene poxB as a novel NsrR target, which we confirmed and showed to be due to read-through transcription from the upstream hcp-hcr genes. We also present evidence to suggest that NsrR is a regulator of the sufABCDSE genes, which encode the components of an [Fe–S] cluster biogenesis and repair system.
-
-
-
Modulation of violacein production and phenotypes associated with biofilm by exogenous quorum sensing N-acylhomoserine lactones in the marine bacterium Pseudoalteromonas ulvae TC14
Various phenotypes ranging from biofilm formation to pigment production have been shown to be regulated by quorum sensing (QS) in many bacteria. However, studies of the regulation of pigments produced by marine bacteria in saline conditions and of biofilm-associated phenotypes are scarcer. This study focuses on the demonstration of the existence of a QS communication system involving N-acylhomoserine lactones (AHLs) in the Mediterranean Sea strain Pseudoalteromonas ulvae TC14. We have investigated whether TC14 produces the violacein pigment, and whether intrinsic or exogenous AHLs could influence its production and modulate biofilm-associated phenotypes. Here, we demonstrate that the purple pigment produced by TC14 is violacein. The study shows that in planktonic conditions, TC14 produces more pigment in the medium in which it grows less. Using different approaches, the results also show that TC14 does not produce intrinsic AHLs in our conditions. When exogenous AHLs are added in planktonic conditions, the production of violacein is upregulated by C6-, C12-, 3-oxo-C8 and 3-oxo-C12-HSLs (homoserine lactones), and downregulated by 3-oxo-C6-HSL. In sessile conditions, 3-oxo-C8-HSL upregulates the production of violacein. The study of the biofilm-associated phenotypes shows that oxo-derived-HSLs decrease adhesion, swimming and biofilm formation. While 3-oxo-C8 and 3-oxo-C12-HSLs decrease both swimming and adhesion, 3-oxo-C6-HSLs decrease not only violacein production in planktonic conditions but also swimming, adhesion and more subtly biofilm formation. Therefore, TC14 may possess a functional LuxR-type QS receptor capable of sensing extrinsic AHLs, which controls violacein production, motility, adhesion and biofilm formation.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)