1887

Abstract

Home composting has been strongly advocated in the UK, Europe and North America to divert organic waste away from conventional waste processing. Despite this, little attention has been given to microbial communities and their diversity in these systems. In this study, we examined the diversity of fungal species in 10 different domestic composts by 454 tag-encoded pyrosequencing. We report the recovery of 478 different molecular operational taxonomic units (MOTUs) from the 10 composts with a mean of 176.7 ± 19.6 MOTUs per compost and a mean of 12.9 ± 3.8 unique MOTUs per sample. Microascales (17.21 %), Hypocreales (16.76 %), Sordariales (14.89 %), Eurotiales (11.25 %) and Mortierellales (7.38 %) were the dominant orders in the community, with (9.52 %), (8.43 %), (3.60 %) and (3.31 %) being the most abundant genera. Fungal communities in home composts were substantially different to large-scale commercial composts, with thermophilic and thermotolerant fungi present in much lower numbers. Significantly, 46.2 % of all sequences were identified as uncultured fungi or could not be assigned above the family level, suggesting there are a high number of new genera and species in these environments still to be described.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000153
2015-10-01
2022-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/10/1921.html?itemId=/content/journal/micro/10.1099/mic.0.000153&mimeType=html&fmt=ahah

References

  1. Adhikari B.K., Trémier A., Martinez J., Barrington S. 2010; Home and community composting for on-site treatment of urban organic waste: perspective for Europe and Canada. Waste Manag Res 28:1039–1053 [View Article][PubMed]
    [Google Scholar]
  2. Adhikari B.K., Trémier A., Barrington S. 2012; Performance of five Montreal West Island home composters. Environ Technol 33:2383–2393 [View Article][PubMed]
    [Google Scholar]
  3. Alef K., Nannipieri P. 1995 Methods in Applied Soil Microbiology and Biochemistry London: Academic Press;
    [Google Scholar]
  4. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  5. Areikin E., Horne J., Scholes P., Mines U., Briggs L., Brown B., Dyson B., Resource W. 2012 A Survey of the UK Organics Recycling Industry in 2010 Banbury: Waste & Resources Action Programme;
    [Google Scholar]
  6. Baldrian P., Kolařík M., Stursová M., Kopecký J., Valášková V., Větrovský T., Zifčáková L., Snajdr J., Rídl J., other authors. 2012; Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J 6:248–258 [View Article][PubMed]
    [Google Scholar]
  7. Beffa T., Staib F., Lott Fischer J., Lyon P.F., Gumowski P., Marfenina O.E., Dunoyer-Geindre S., Georgen F., Roch-Susuki R., other authors. 1998; Mycological control and surveillance of biological waste and compost. Med Mycol 36:(Suppl 1)137–145[PubMed]
    [Google Scholar]
  8. Bellemain E., Carlsen T., Brochmann C., Coissac E., Taberlet P., Kauserud H. 2010; ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189 [View Article][PubMed]
    [Google Scholar]
  9. Blaalid R., Kumar S., Nilsson R.H., Abarenkov K., Kirk P.M., Kauserud H. 2013; ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol Ecol Resour 13:218–224 [View Article][PubMed]
    [Google Scholar]
  10. Buée M., Reich M., Murat C., Morin E., Nilsson R.H., Uroz S., Martin F. 2009; 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456 [View Article][PubMed]
    [Google Scholar]
  11. Chang Y. 1967; The fungi of wheat straw compost: II. Biochemical and physiological studies. Trans Br Mycol Soc 50:667–677 [View Article]
    [Google Scholar]
  12. Chang Y., Hudson H.J. 1967; The fungi of wheat straw compost: I. Ecological studies. Trans Br Mycol Soc 50:649–666 [View Article]
    [Google Scholar]
  13. Colón J., Martinez-Blanco J., Gabarrell X., Artola A., Sanchez A., Rieradevall J., Font X. 2010; Environmental assessment of home composting. Resour Conserv Recycling 54:893–904 [View Article]
    [Google Scholar]
  14. Cornell Waste Management Institute 2004 Hygienic Implications of Small-Scale Composting in New York State Ithaca, NY: Cold Compost Project;
    [Google Scholar]
  15. de Bertoldi M., Vallini G., Pera A. 1983; The biology of composting: a review. Waste Manag Res 1:157–176 [View Article]
    [Google Scholar]
  16. De Gannes V., Eudoxie G., Hickey W.J. 2013; Insights into fungal communities in composts revealed by 454-pyrosequencing: implications for human health and safety. Front Microbiol 4:164 [View Article][PubMed]
    [Google Scholar]
  17. DEFRA 2006 Consultation Document on the Review of England's Waste Strategy London: DEFRA;
    [Google Scholar]
  18. Edgar R.C. 2010; Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461 [View Article][PubMed]
    [Google Scholar]
  19. Epstein E. 1997 The Science of Composting Lancaster: Technomic;
    [Google Scholar]
  20. Finstein M.S., Morris M.L. 1975; Microbiology of municipal solid waste composting. Adv Appl Microbiol 19:113–151 [CrossRef]
    [Google Scholar]
  21. Jain M.K., Kapoor K.K., Mishra M.M. 1979; Cellulase activity, degradation of cellulose and lignin, and humus formation by thermophilic fungi. Trans Br Mycol Soc 73:85–89 [View Article]
    [Google Scholar]
  22. Jasim S. 2003 The practicability of home composting for the management of biodegradable domestic solid waste PhD thesis London, UK: Imperial College London;
    [Google Scholar]
  23. Jumpponen A., Jones K.L. 2009; Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. New Phytol 184:438–448 [View Article][PubMed]
    [Google Scholar]
  24. Kerekes J., Kaspari M., Stevenson B., Nilsson R.H., Hartmann M., Amend A., Bruns T.D. 2013; Nutrient enrichment increased species richness of leaf litter fungal assemblages in a tropical forest. Mol Ecol 22:2827–2838 [View Article][PubMed]
    [Google Scholar]
  25. Kumar S. 2011; Composting of municipal solid waste. Crit Rev Biotechnol 31:112–136 [View Article][PubMed]
    [Google Scholar]
  26. Kutzner H.J. 2000; Microbiology of composting. In Biotechnology: Environmental Processes III Edited by Rehm H.-J., Reed G., Pühler A., Stadler P. vol. 11c , 2nd edn. Weinheim: Wiley-VCH; http://dx.doi.org/10.1002/9783527620968.ch2
    [Google Scholar]
  27. Langarica-Fuentes A., Zafar U., Heyworth A., Brown T., Fox G., Robson G.D. 2014a; Fungal succession in an in-vessel composting system characterized using 454 pyrosequencing. FEMS Microbiol Ecol 88:296–308 [View Article][PubMed]
    [Google Scholar]
  28. Langarica-Fuentes A., Handley P.S., Houlden A., Fox G., Robson G.D. 2014b; An investigation of the biodiversity of thermophilic and thermotolerant fungal species in composts using culture-based and molecular techniques. Fungal Ecol 11:132–144 [View Article]
    [Google Scholar]
  29. Le Goff O., Bru-Adan V., Bacheley H., Godon J.J., Wéry N. 2010; The microbial signature of aerosols produced during the thermophilic phase of composting. J Appl Microbiol 108:325–340 [View Article][PubMed]
    [Google Scholar]
  30. Maheshwari R., Bharadwaj G., Bhat M.K. 2000; Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488 [View Article][PubMed]
    [Google Scholar]
  31. Meiser A., Bálint M., Schmitt I. 2014; Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns. New Phytol 201:623–635 [View Article][PubMed]
    [Google Scholar]
  32. Monard C., Gantner S., Stenlid J. 2013; Utilizing ITS1 and ITS2 to study environmental fungal diversity using pyrosequencing. FEMS Microbiol Ecol 84:165–175 [View Article][PubMed]
    [Google Scholar]
  33. Moore D., Robson G.D., Trinci A.P.J. 2011 21st Century Guidebook to Fungi Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  34. Novinscak A., DeCoste N.J., Surette C., Filion M. 2009; Characterization of bacterial and fungal communities in composted biosolids over a 2 year period using denaturing gradient gel electrophoresis. Can J Microbiol 55:375–387 [View Article][PubMed]
    [Google Scholar]
  35. O'Donnell K. 1993; Fusarium and its near relatives. In The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics pp. 225–233 Edited by Reynolds D. R., Taylor J. W. Wallingford: CAB International;
    [Google Scholar]
  36. Pankhurst L.J., Akeel U., Hewson C., Maduka I., Pham P., Saragossi J., Taylor J., Lai K.M. 2011; Understanding and mitigating the challenge of bioaerosol emissions from urban community composting. Atmos Environ 45:85–93 [View Article]
    [Google Scholar]
  37. Parfitt J. 2009 Home Composting Diversion: District Level Analysis Banbury: Waste & Resources Action Programme;
    [Google Scholar]
  38. Ryckeboer J., Mergaert J., Vaes K., Klammer S., De Clercq D., Coosemans J., Insam H., Swings J. 2003; A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53:349–410
    [Google Scholar]
  39. Schmidt P.S., Bálint M., Greshake B., Bandow C., Römbke J., Schmitt I. 2013; Illumina metabarcoding of a soil fungal community. Soil Biol Biochem 65:128–132 [View Article]
    [Google Scholar]
  40. Schoch C.L., Sung G.-H., López-Giráldez F., Townsend J.P., Miadlikowska J., Hofstetter V., Robbertse B., Matheny P.B., Kauff F., other authors. 2009; The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239 [View Article][PubMed]
    [Google Scholar]
  41. Sharma H.S.S. 1989; Economic importance of thermophilous fungi. Appl Microbiol Biotechnol 31:1–10
    [Google Scholar]
  42. Smith S.R., Jasim S. 2009; Small-scale home composting of biodegradable household waste: overview of key results from a 3-year research programme in West London. Waste Manag Res 27:941–950 [View Article][PubMed]
    [Google Scholar]
  43. Sykes P., Jones K., Wildsmith J.D. 2007; Managing the potential public health risks from bioaerosol liberation at commercial composting sites in the UK: an analysis of the evidence base. Resour Conserv Recycling 52:410–424 [View Article]
    [Google Scholar]
  44. Tedersoo L., Nilsson R.H., Abarenkov K., Jairus T., Sadam A., Saar I., Bahram M., Bechem E., Chuyong G., Kõljalg U. 2010; 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytol 188:291–301 [View Article][PubMed]
    [Google Scholar]
  45. Toju H., Tanabe A.S., Yamamoto S., Sato H. 2012; High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS One 7:e40863 [View Article][PubMed]
    [Google Scholar]
  46. Webster J., Weber R. 1980 Introduction to Fungi Cambridge: Cambridge University Press;
    [Google Scholar]
  47. White T.J., Bruns T., Lee S., Taylor J. 1990; Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications pp. 315–322 Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. New York: Academic Press;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000153
Loading
/content/journal/micro/10.1099/mic.0.000153
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error