1887

Abstract

HmbB, a predominantly mitochondrial high-mobility group box (HMGB) protein, of affects diverse biological activities, such as sterigmatocystin production, the maintenance of mitochondrial DNA copy number, germination of asexual and sexual spores, and protection against oxidative stress agents. We hypothesized that the latter correlates with an unbalanced intracellular redox state, in which case, a not yet fully characterized physiological function could be attributed to this mitochondrial HMGB protein. Here, we studied the intracellular redox environment and oxidative stress tolerance in and Δ strains under normal and oxidative stress conditions by measuring glutathione redox couple, intracellular reactive oxygen species (ROS) content and ROS-protecting enzyme activities. Our results revealed that the intracellular redox environment is different in Δ conidia and mycelia from that of , and shed light on the seemingly contradictory difference in the tolerance of Δ mycelia to diamide and menadione oxidative stressors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000139
2015-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/10/1897.html?itemId=/content/journal/micro/10.1099/mic.0.000139&mimeType=html&fmt=ahah

References

  1. Arnaud M.B., Cerqueira G.C., Inglis D.O., Skrzypek M.S., Binkley J., Chibucos M.C., Crabtree J., Howarth C., Orvis J., other authors. ( 2012;). The Aspergillus Genome Database (AspGD): recent developments in comprehensive multispecies curation, comparative genomics and community resources. Nucleic Acids Res 40: (D1), D653–D659 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baidya S., Duran R.M., Lohmar J.M., Harris-Coward P.Y., Cary J.W., Hong S.Y., Roze L.V., Linz J.E., Calvo A.M.. ( 2014;). VeA is associated with the response to oxidative stress in the aflatoxin producer Aspergillus flavus. Eukaryot Cell 13: 1095–1103 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bakkaiova J., Arata K., Matsunobu M., Ono B., Aoki T., Lajdova D., Nebohacova M., Nosek J., Miyakawa I., Tomaska L.. ( 2014;). The strictly aerobic yeast Yarrowia lipolytica tolerates loss of a mitochondrial DNA-packaging protein. Eukaryot Cell 13: 1143–1157 [CrossRef] [PubMed].
    [Google Scholar]
  4. Balázs A., Pócsi I., Hamari Z., Leiter E., Emri T., Miskei M., Oláh J., Tóth V., Hegedus N., other authors. ( 2010;). AtfA bZIP-type transcription factor regulates oxidative and osmotic stress responses in Aspergillus nidulans. Mol Genet Genomics 283: 289–303 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bradford M.M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254 [CrossRef] [PubMed].
    [Google Scholar]
  6. Brewer L.R., Friddle R., Noy A., Baldwin E., Martin S.S., Corzett M., Balhorn R., Baskin R.J.. ( 2003;). Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p. Biophys J 85: 2519–2524 [CrossRef] [PubMed].
    [Google Scholar]
  7. Butchko R.A., Adams T.H., Keller N.P.. ( 1999;). Aspergillus nidulans mutants defective in stc gene cluster regulation. Genetics 153: 715–720 [PubMed].
    [Google Scholar]
  8. Carter W.O., Narayanan P.K., Robinson J.P.. ( 1994;). Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol 55: 253–258 [PubMed].
    [Google Scholar]
  9. Chiu D.T., Stults F.H., Tappel A.L.. ( 1976;). Purification and properties of rat lung soluble glutathione peroxidase. Biochim Biophys Acta 445: 558–566 [CrossRef] [PubMed].
    [Google Scholar]
  10. Cove D.J.. ( 1966;). The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113: 51–56 [CrossRef] [PubMed].
    [Google Scholar]
  11. Dequard-Chablat M., Alland C.. ( 2002;). Two copies of mthmg1, encoding a novel mitochondrial HMG-like protein, delay accumulation of mitochondrial DNA deletions in Podospora anserina. Eukaryot Cell 1: 503–513 [CrossRef] [PubMed].
    [Google Scholar]
  12. Diffley J.F., Stillman B.. ( 1991;). A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc Natl Acad Sci U S A 88: 7864–7868 [CrossRef] [PubMed].
    [Google Scholar]
  13. Emri T., Bartok G., Szentirmai A.. ( 1994;). Regulation of specific activity of glucose-6-phosphate-dehydrogenase and 6-phosphogluconate dehydrogenase in Penicillium chrysogenum. FEMS Microbiol Lett 117: 67–70 [CrossRef].
    [Google Scholar]
  14. Fan J., Ye J., Kamphorst J.J., Shlomi T., Thompson C.B., Rabinowitz J.D.. ( 2014;). Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510: 298–302 [CrossRef] [PubMed].
    [Google Scholar]
  15. Ferenczy L., Kevei F., Szegedi M.. ( 1975;). Increased fusion frequency of Aspergillus nidulans protoplasts. Experientia 31: 50–52 [CrossRef] [PubMed].
    [Google Scholar]
  16. Fraser J.A., Davis M.A., Hynes M.J.. ( 2002;). A gene from Aspergillus nidulans with similarity to URE2 of Saccharomyces cerevisiae encodes a glutathione S-transferase which contributes to heavy metal and xenobiotic resistance. Appl Environ Microbiol 68: 2802–2808 [CrossRef] [PubMed].
    [Google Scholar]
  17. Gille G., Sigler K.. ( 1995;). Oxidative stress and living cells. Folia Microbiol (Praha) 40: 131–152 [CrossRef] [PubMed].
    [Google Scholar]
  18. Grintzalis K., Vernardis S.I., Klapa M.I., Georgiou C.D.. ( 2014;). Role of oxidative stress in sclerotial differentiation and aflatoxin B1 biosynthesis in Aspergillus flavus. Appl Environ Microbiol 80: 5561–5571 [CrossRef] [PubMed].
    [Google Scholar]
  19. Karácsony Z., Gácser A., Vágvölgyi C., Scazzocchio C., Hamari Z.. ( 2014;). A dually located multi-HMG-box protein of Aspergillus nidulans has a crucial role in conidial and ascospore germination. Mol Microbiol 94: 383–402 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kaufman B.A., Durisic N., Mativetsky J.M., Costantino S., Hancock M.A., Grutter P., Shoubridge E.A.. ( 2007;). The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell 18: 3225–3236 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kevei F., Peberdy J.F.. ( 1977;). Interspecific hybridization between Aspergillus nidulans and Aspergillus rugulosus by fusion of somatic protoplasts. J Gen Microbiol 102: 255–262 [CrossRef].
    [Google Scholar]
  22. Larionov A., Krause A., Miller W.. ( 2005;). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics 6: 62 [CrossRef] [PubMed].
    [Google Scholar]
  23. Larsson N.G., Wang J., Wilhelmsson H., Oldfors A., Rustin P., Lewandoski M., Barsh G.S., Clayton D.A.. ( 1998;). Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18: 231–236 [CrossRef] [PubMed].
    [Google Scholar]
  24. MacAlpine D.M., Perlman P.S., Butow R.A.. ( 1998;). The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo. Proc Natl Acad Sci U S A 95: 6739–6743 [CrossRef] [PubMed].
    [Google Scholar]
  25. Matsumoto S., Teshigawara M., Tsuboi S., Ohmori S.. ( 1996;). Determination of glutathione and glutathione disulfide in biological samples using acrylonitrile as a thiol-blocking reagent. Anal Sci 12: 91–95 [CrossRef].
    [Google Scholar]
  26. Miyakawa I., Okamuro A., Kinsky S., Visacka K., Tomaska L., Nosek J.. ( 2009;). Mitochondrial nucleoids from the yeast Candida parapsilosis: expansion of the repertoire of proteins associated with mitochondrial DNA. Microbiology 155: 1558–1568 [CrossRef] [PubMed].
    [Google Scholar]
  27. Miyakawa I., Kanayama M., Fujita Y., Sato H.. ( 2010;). Morphology and protein composition of the mitochondrial nucleoids in yeast cells lacking Abf2p, a high mobility group protein. J Gen Appl Microbiol 56: 455–464 [CrossRef] [PubMed].
    [Google Scholar]
  28. Ngo H.B., Kaiser J.T., Chan D.C.. ( 2011;). The mitochondrial transcription and packaging factor Tfam imposes a U-turn on mitochondrial DNA. Nat Struct Mol Biol 18: 1290–1296 [CrossRef] [PubMed].
    [Google Scholar]
  29. Oberley L.W., Spitz D.R.. ( 1984;). Assay of superoxide dismutase activity in tumor tissue. Methods Enzymol 105: 457–464 [CrossRef] [PubMed].
    [Google Scholar]
  30. Pinto M.C., Mata A.M., Lopez-Barea J.. ( 1984;). Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions. Arch Biochem Biophys 228: 1–12 [CrossRef] [PubMed].
    [Google Scholar]
  31. Pócsi I., Miskei M., Karányi Z., Emri T., Ayoubi P., Pusztahelyi T., Balla G., Prade R.A.. ( 2005;). Comparison of gene expression signatures of diamide, H2O2 and menadione exposed Aspergillus nidulans cultures – linking genome-wide transcriptional changes to cellular physiology. BMC Genomics 6: 182 [CrossRef] [PubMed].
    [Google Scholar]
  32. Pusztahelyi T., Klement E., Szajli E., Klem J., Miskei M., Karányi Z., Emri T., Kovács S., Orosz G., other authors. ( 2011;). Comparison of transcriptional and translational changes caused by long-term menadione exposure in Aspergillus nidulans. Fungal Genet Biol 48: 92–103 [CrossRef] [PubMed].
    [Google Scholar]
  33. Reverberi M., Zjalic S., Punelli F., Ricelli A., Fabbri A.A., Fanelli C.. ( 2007;). Apyap1 affects aflatoxin biosynthesis during Aspergillus parasiticus growth in maize seeds. Food Addit Contam 24: 1070–1075 [CrossRef] [PubMed].
    [Google Scholar]
  34. Reverberi M., Punelli M., Smith C.A., Zjalic S., Scarpari M., Scala V., Cardinali G., Aspite N., Pinzari F., other authors. ( 2012;). How peroxisomes affect aflatoxin biosynthesis in Aspergillus flavus. PLoS One 7: e48097 [CrossRef] [PubMed].
    [Google Scholar]
  35. Roggenkamp R., Sahm H., Wagner F.. ( 1974;). Microbial assimilation of methanol induction and function of catalase in Candida boidinii. FEBS Lett 41: 283–286 [CrossRef] [PubMed].
    [Google Scholar]
  36. Royall J.A., Ischiropoulos H.. ( 1993;). Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302: 348–355 [CrossRef] [PubMed].
    [Google Scholar]
  37. Rubio-Cosials A., Sidow J.F., Jiménez-Menéndez N., Fernández-Millán P., Montoya J., Jacobs H.T., Coll M., Bernadó P., Solà M.. ( 2011;). Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter. Nat Struct Mol Biol 18: 1281–1289 [CrossRef] [PubMed].
    [Google Scholar]
  38. Sato I., Shimizu M., Hoshino T., Takaya N.. ( 2009;). The glutathione system of Aspergillus nidulans involves a fungus-specific glutathione S-transferase. J Biol Chem 284: 8042–8053 [CrossRef] [PubMed].
    [Google Scholar]
  39. Scazzocchio C., Sdrin N., Ong G.. ( 1982;). Positive regulation in a eukaryote, a study of the uaY gene of Aspergillus nidulans: I. Characterization of alleles, dominance and complementation studies, and a fine structure map of the uaY-oxpA cluster. Genetics 100: 185–208 [PubMed].
    [Google Scholar]
  40. Tamoi M., Miyazaki T., Fukamizo T., Shigeoka S.. ( 2005;). The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J 42: 504–513 [CrossRef] [PubMed].
    [Google Scholar]
  41. Visacka K., Gerhold J.M., Petrovicova J., Kinsky S., Jõers P., Nosek J., Sedman J., Tomaska L.. ( 2009;). Novel subfamily of mitochondrial HMG box-containing proteins: functional analysis of Gcf1p from Candida albicans. Microbiology 155: 1226–1240 [CrossRef] [PubMed].
    [Google Scholar]
  42. Warholm M., Guthenberg C., von Bahr C., Mannervik B.. ( 1985;). Glutathione transferases from human liver. Methods Enzymol 113: 499–504 [CrossRef] [PubMed].
    [Google Scholar]
  43. Wartenberg D., Vödisch M., Kniemeyer O., Albrecht-Eckardt D., Scherlach K., Winkler R., Weide M., Brakhage A.A.. ( 2012;). Proteome analysis of the farnesol-induced stress response in Aspergillus nidulans – the role of a putative dehydrin. J Proteomics 75: 4038–4049 [CrossRef] [PubMed].
    [Google Scholar]
  44. Yin W.B., Reinke A.W., Szilágyi M., Emri T., Chiang Y.M., Keating A.E., Pócsi I., Wang C.C., Keller N.P.. ( 2013;). bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans. Microbiology 159: 77–88 [CrossRef] [PubMed].
    [Google Scholar]
  45. Yu J., Chang P.K., Ehrlich K.C., Cary J.W., Bhatnagar D., Cleveland T.E., Payne G.A., Linz J.E., Woloshuk C.P., Bennett J.W.. ( 2004;). Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol 70: 1253–1262 [CrossRef] [PubMed].
    [Google Scholar]
  46. Zelenaya-Troitskaya O., Newman S.M., Okamoto K., Perlman P.S., Butow R.A.. ( 1998;). Functions of the high mobility group protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae. Genetics 148: 1763–1776 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000139
Loading
/content/journal/micro/10.1099/mic.0.000139
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error