1887

Abstract

causes chronic lung infections in people with cystic fibrosis (CF) and acute opportunistic infections in people without CF. Forty-two strains from a range of clinical and environmental sources were collated into a single reference strain panel to harmonise research on this diverse opportunistic pathogen. To facilitate further harmonized and comparable research on , we characterized the panel strains for growth rates, motility, virulence in the infection model, pyocyanin and alginate production, mucoid phenotype, LPS pattern, biofilm formation, urease activity, and antimicrobial and phage susceptibilities. Phenotypic diversity across the panel was apparent for all phenotypes examined, agreeing with the marked variability seen in this species. However, except for growth rate, the phenotypic diversity among strains from CF versus non-CF sources was comparable. CF strains were less virulent in the model than non-CF strains ( = 0.037). Transmissible CF strains generally lacked O-antigen, produced less pyocyanin and had low virulence in . Furthermore, in the three sets of sequential CF strains, virulence, O-antigen expression and pyocyanin production were higher in the earlier isolate compared to the isolate obtained later in infection. Overall, this full phenotypic characterization of the defined panel of strains increases our understanding of the virulence and pathogenesis of and may provide a valuable resource for the testing of novel therapies against this problematic pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000155
2015-10-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/10/1961.html?itemId=/content/journal/micro/10.1099/mic.0.000155&mimeType=html&fmt=ahah

References

  1. Adams M.H.. 1959; Bacteriophages New York: Interscience;
    [Google Scholar]
  2. Andersen J.B., Heydorn A., Hentzer M., Eberl L., Geisenberger O., Christensen B.B., Molin S., Givskov M.. 2001; gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol67:575–585 [CrossRef][PubMed]
    [Google Scholar]
  3. Barth A.L., Pitt T.L.. 1995; Auxotrophic variants of Pseudomonas aeruginosa are selected from prototrophic wild-type strains in respiratory infections in patients with cystic fibrosis. J Clin Microbiol33:37–40[PubMed]
    [Google Scholar]
  4. Brackman G., Hillaert U., Van Calenbergh S., Nelis H.J., Coenye T.. 2009; Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia . Res Microbiol160:144–151 [CrossRef][PubMed]
    [Google Scholar]
  5. Bragonzi A., Wiehlmann L., Klockgether J., Cramer N., Worlitzsch D., Döring G., Tümmler B.. 2006; Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology152:3261–3269 [CrossRef][PubMed]
    [Google Scholar]
  6. Bragonzi A., Paroni M., Nonis A., Cramer N., Montanari S., Rejman J., Di Serio C., Döring G., Tümmler B.. 2009; Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. Am J Respir Crit Care Med180:138–145 [CrossRef][PubMed]
    [Google Scholar]
  7. Carter M.E., Fothergill J.L., Walshaw M.J., Rajakumar K., Kadioglu A., Winstanley C.. 2010; A subtype of a Pseudomonas aeruginosa cystic fibrosis epidemic strain exhibits enhanced virulence in a murine model of acute respiratory infection. J Infect Dis202:935–942 [CrossRef][PubMed]
    [Google Scholar]
  8. Ceyssens P.J., Lavigne R.. 2010; Bacteriophages of Pseudomonas . Future Microbiol5:1041–1055 [CrossRef][PubMed]
    [Google Scholar]
  9. Colvin K.M., Gordon V.D., Murakami K., Borlee B.R., Wozniak D.J., Wong G.C., Parsek M.R.. 2011; The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa . PLoS Pathog7:e1001264 [CrossRef][PubMed]
    [Google Scholar]
  10. Cullen L., McClean S.. 2015; Bacterial adaptation during chronic respiratory infections. Pathogens4:66–89 [CrossRef][PubMed]
    [Google Scholar]
  11. Darch S.E., McNally A., Harrison F., Corander J., Barr H.L., Paszkiewicz K., Holden S., Fogarty A., Crusz S.A., Diggle S.P.. 2015; Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. Sci Rep5:7649 [CrossRef][PubMed]
    [Google Scholar]
  12. De Soyza A., Hall A.J., Mahenthiralingam E., Drevinek P., Kaca W., Drulis-Kawa Z., Stoitsova S.R., Toth V., Coenye T., other authors. 2013; Developing an international Pseudomonas aeruginosa reference panel. MicrobiologyOpen2:1010–1023 [CrossRef][PubMed]
    [Google Scholar]
  13. Dietrich L.E., Price-Whelan A., Petersen A., Whiteley M., Newman D.K.. 2006; The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa . Mol Microbiol61:1308–1321 [CrossRef][PubMed]
    [Google Scholar]
  14. Drulis-Kawa Z., Majkowska-Skrobek G., Maciejewska B., Delattre A.S., Lavigne R.. 2012; Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci13:699–722 [CrossRef][PubMed]
    [Google Scholar]
  15. Essar D.W., Eberly L., Hadero A., Crawford I.P.. 1990; Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol172:884–900[PubMed]
    [Google Scholar]
  16. Fothergill J.L., Mowat E., Ledson M.J., Walshaw M.J., Winstanley C.. 2010; Fluctuations in phenotypes and genotypes within populations of Pseudomonas aeruginosa in the cystic fibrosis lung during pulmonary exacerbations. J Med Microbiol59:472–481 [CrossRef][PubMed]
    [Google Scholar]
  17. Guttman B., Raya R., Kutter E.. 2005; Basic phage biology. In Bacteriophages Biology and Application Boca Raton, FL: CRC Press;
    [Google Scholar]
  18. Hendrickson E.L., Plotnikova J., Mahajan-Miklos S., Rahme L.G., Ausubel F.M.. 2001; Differential roles of the Pseudomonas aeruginosa PA14 rpoN gene in pathogenicity in plants, nematodes, insects, and mice. J Bacteriol183:7126–7134 [CrossRef][PubMed]
    [Google Scholar]
  19. Hoffmann N., Rasmussen T.B., Jensen P.O., Stub C., Hentzer M., Molin S., Ciofu O., Givskov M., Johansen H.K., Høiby N.. 2005; Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect Immun73:2504–2514 [CrossRef][PubMed]
    [Google Scholar]
  20. Junker L.M., Clardy J.. 2007; High-throughput screens for small-molecule inhibitors of Pseudomonas aeruginosa biofilm development. Antimicrob Agents Chemother51:3582–3590 [CrossRef][PubMed]
    [Google Scholar]
  21. Kahm M., Hassenbrink G., Lichtenbert-Fraté H., Ludqig J., Kschischo M.. 2010; grofit: fitting biological growth curves with R. J Stat Softw33:7[PubMed][CrossRef]
    [Google Scholar]
  22. Knutson C.A., Jeanes A.. 1968; A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem24:470–481 [CrossRef][PubMed]
    [Google Scholar]
  23. Kocíncová D., Lam J.S.. 2011; Structural diversity of the core oligosaccharide domain of Pseudomonas aeruginosa lipopolysaccharide. Biochemistry (Mosc)76:755–760 [CrossRef][PubMed]
    [Google Scholar]
  24. Konieczna I., Zarnowiec P., Kwinkowski M., Kolesinska B., Fraczyk J., Kaminski Z., Kaca W.. 2012; Bacterial urease and its role in long-lasting human diseases. Curr Protein Pept Sci13:789–806 [CrossRef][PubMed]
    [Google Scholar]
  25. Kukavica-Ibrulj I., Sanschagrin F., Peterson A., Whiteley M., Boyle B., Mackay J., Levesque R.C.. 2008; Functional genomics of PycR, a LysR family transcriptional regulator essential for maintenance of Pseudomonas aeruginosa in the rat lung. Microbiology154:2106–2118 [CrossRef][PubMed]
    [Google Scholar]
  26. Kutter E.. 2009; Phage host range and efficiency of plating. Methods Mol Biol501:141–149 [CrossRef][PubMed]
    [Google Scholar]
  27. Labrie S.J., Samson J.E., Moineau S.. 2010; Bacteriophage resistance mechanisms. Nat Rev Microbiol8:317–327 [CrossRef][PubMed]
    [Google Scholar]
  28. Leitão J.H., Alvim T., Sá-Correia I.. 1996; Ribotyping of Pseudomonas aeruginosa isolates from patients and water springs and genome fingerprinting of variants concerning mucoidy. FEMS Immunol Med Microbiol13:287–292 [CrossRef][PubMed]
    [Google Scholar]
  29. Lesse A.J., Campagnari A.A., Bittner W.E., Apicella M.A.. 1990; Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods126:109–117 [CrossRef][PubMed]
    [Google Scholar]
  30. Lorè N.I., Cigana C., De Fino I., Riva C., Juhas M., Schwager S., Eberl L., Bragonzi A.. 2012; Cystic fibrosis-niche adaptation of Pseudomonas aeruginosa reduces virulence in multiple infection hosts. PLoS One7:e35648 [CrossRef][PubMed]
    [Google Scholar]
  31. Mahenthiralingam E., Campbell M.E., Speert D.P.. 1994; Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun62:596–605[PubMed]
    [Google Scholar]
  32. Marolda C.L., Welsh J., Dafoe L., Valvano M.A.. 1990; Genetic analysis of the O7-polysaccharide biosynthesis region from the Escherichia coli O7:K1 strain VW187. J Bacteriol172:3590–3599[PubMed]
    [Google Scholar]
  33. Mattick J.S.. 2002; Type IV pili and twitching motility. Annu Rev Microbiol56:289–314 [CrossRef][PubMed]
    [Google Scholar]
  34. McMichael J.C.. 1992; Bacterial differentiation within Moraxella bovis colonies growing at the interface of the agar medium with the Petri dish. J Gen Microbiol138:2687–2695 [CrossRef][PubMed]
    [Google Scholar]
  35. Mikkelsen H., Hui K., Barraud N., Filloux A.. 2013; The pathogenicity island encoded PvrSR/RcsCB regulatory network controls biofilm formation and dispersal in Pseudomonas aeruginosa PA14. Mol Microbiol89:450–463 [CrossRef][PubMed]
    [Google Scholar]
  36. Mowat E., Paterson S., Fothergill J.L., Wright E.A., Ledson M.J., Walshaw M.J., Brockhurst M.A., Winstanley C.. 2011; Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am J Respir Crit Care Med183:1674–1679 [CrossRef][PubMed]
    [Google Scholar]
  37. Mulcahy L.R., Burns J.L., Lory S., Lewis K.. 2010; Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol192:6191–6199 [CrossRef][PubMed]
    [Google Scholar]
  38. Overhage J., Bains M., Brazas M.D., Hancock R.E.. 2008; Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol190:2671–2679 [CrossRef][PubMed]
    [Google Scholar]
  39. Pier G.B., Matthews W.J. Jr, Eardley D.D.. 1983; Immunochemical characterization of the mucoid exopolysaccharide of Pseudomonas aeruginosa . J Infect Dis147:494–503 [CrossRef][PubMed]
    [Google Scholar]
  40. R Development Core Team 2013; R: a Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing;
    [Google Scholar]
  41. Rashid M.H., Kornberg A.. 2000; Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A97:4885–4890 [CrossRef][PubMed]
    [Google Scholar]
  42. Rasmussen T.B., Bjarnsholt T., Skindersoe M.E., Hentzer M., Kristoffersen P., Köte M., Nielsen J., Eberl L., Givskov M.. 2005; Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol187:1799–1814 [CrossRef][PubMed]
    [Google Scholar]
  43. Ryall B., Carrara M., Zlosnik J.E., Behrends V., Lee X., Wong Z., Lougheed K.E., Williams H.D.. 2014; The mucoid switch in Pseudomonas aeruginosa represses quorum sensing systems and leads to complex changes to stationary phase virulence factor regulation. PLoS One9:e96166 [CrossRef][PubMed]
    [Google Scholar]
  44. Salunkhe P., Smart C.H., Morgan J.A., Panagea S., Walshaw M.J., Hart C.A., Geffers R., Tümmler B., Winstanley C.. 2005; A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol187:4908–4920 [CrossRef][PubMed]
    [Google Scholar]
  45. Schägger H., von Jagow G.. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem166:368–379 [CrossRef][PubMed]
    [Google Scholar]
  46. Smith E.E., Buckley D.G., Wu Z., Saenphimmachak C., Hoffman L.R., D'Argenio D.A., Miller S.I., Ramsey B.W., Speert D.P., other authors. 2006; Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A103:8487–8492 [CrossRef][PubMed]
    [Google Scholar]
  47. Sonnleitner E., Hagens S., Rosenau F., Wilhelm S., Habel A., Jäger K.E., Bläsi U.. 2003; Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog35:217–228 [CrossRef][PubMed]
    [Google Scholar]
  48. Sousa A.M., Pereira M.O.. 2014; Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs - a review. Pathogens3:680–703 [CrossRef][PubMed]
    [Google Scholar]
  49. Spitzer M., Wildenhain J., Rappsilber J., Tyers M.. 2014; BoxPlotR: a web tool for generation of box plots. Nat Methods11:121–122 [CrossRef][PubMed]
    [Google Scholar]
  50. Sulakvelidze A., Alavidze Z., Morris J.G. Jr. 2001; Bacteriophage therapy. Antimicrob Agents Chemother45:649–659 [CrossRef][PubMed]
    [Google Scholar]
  51. Toussaint B., Delic-Attree I., Vignais P.M.. 1993; Pseudomonas aeruginosa contains an IHF-like protein that binds to the algD promoter. Biochem Biophys Res Commun196:416–421 [CrossRef][PubMed]
    [Google Scholar]
  52. Tremblay J., Déziel E.. 2010; Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics11:587 [CrossRef][PubMed]
    [Google Scholar]
  53. Verstraeten N., Braeken K., Debkumari B., Fauvart M., Fransaer J., Vermant J., Michiels J.. 2008; Living on a surface: swarming and biofilm formation. Trends Microbiol16:496–506 [CrossRef][PubMed]
    [Google Scholar]
  54. Weinbauer M.G.. 2004; Ecology of prokaryotic viruses. FEMS Microbiol Rev28:127–181 [CrossRef][PubMed]
    [Google Scholar]
  55. Whiley R.A., Sheikh N.P., Mushtaq N., Hagi-Pavli E., Personne Y., Javaid D., Waite R.D.. 2014; Differential potentiation of the virulence of the Pseudomonas aeruginosa cystic fibrosis Liverpool epidemic strain by oral commensal streptococci. J Infect Dis209:769–780 [CrossRef][PubMed]
    [Google Scholar]
  56. Wiehlmann L., Wagner G., Cramer N., Siebert B., Gudowius P., Morales G., Köhler T., van Delden C., Weinel C., other authors. 2007; Population structure of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A104:8101–8106 [CrossRef][PubMed]
    [Google Scholar]
  57. Williams D., Evans B., Haldenby S., Walshaw M.J., Brockhurst M.A., Winstanley C., Paterson S.. 2015; Divergent, coexisting Pseudomonas aeruginosa lineages in chronic cystic fibrosis lung infections. Am J Respir Crit Care Med191:775–785 [CrossRef][PubMed]
    [Google Scholar]
  58. Winstanley C., Langille M.G., Fothergill J.L., Kukavica-Ibrulj I., Paradis-Bleau C., Sanschagrin F., Thomson N.R., Winsor G.L., Quail M.A., other authors. 2009; Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool epidemic strain of Pseudomonas aeruginosa. Genome Res19:12–23 [CrossRef][PubMed]
    [Google Scholar]
  59. Workentine M.L., Sibley C.D., Glezerson B., Purighalla S., Norgaard-Gron J.C., Parkins M.D., Rabin H.R., Surette M.G.. 2013; Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient. PLoS One8:e60225 [CrossRef][PubMed]
    [Google Scholar]
  60. Zegans M.E., Wozniak D., Griffin E., Toutain-Kidd C.M., Hammond J.H., Garfoot A., Lam J.S.. 2012; Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80. Antimicrob Agents Chemother56:4112–4122 [CrossRef][PubMed]
    [Google Scholar]
  61. Zhang W., McLamore E.S., Garland N.T., Leon J.V., Banks M.K.. 2013; A simple method for quantifying biomass cell and polymer distribution in biofilms. J Microbiol Methods94:367–374 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000155
Loading
/content/journal/micro/10.1099/mic.0.000155
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error