1887

Abstract

Fructophily has been described in yeasts as the ability to utilize fructose preferentially when fructose and glucose are available in the environment. In and , fructophilic behaviour has been associated with the presence of a particular type of high-capacity and low-affinity fructose transporters designated Ffz. In this study, a PCR screening was performed in several yeasts using degenerate primers suitable to detect -like genes. In parallel, fructophilic character was evaluated in the same strains by comparing the relative consumption rate of fructose and glucose. For all the strains in which -like genes were detected, fructophilic behaviour was observed (25 strains). Results show that genes are ubiquitous in the and clades. Strains of and were not fructophilic and did not harbour genes. It is of note that these new species were recently removed by taxonomists from the clade, supporting the view that the presence of -like genes is a main characteristic of . Among the strains tested, only NCYC2380 was an exception, having a preference for fructose in medium with high sugar concentrations, despite no -like genes being detected in the screening. Furthermore, this study supports the previous idea of the emergence of a new family of hexose transporters (Ffz facilitators) distinct from the Sugar Porter family.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000154
2015-10-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/10/2008.html?itemId=/content/journal/micro/10.1099/mic.0.000154&mimeType=html&fmt=ahah

References

  1. Berthels N.J., Cordero Otero R.R., Bauer F.F., Pretorius I.S., Thevelein J.M.. 2008; Correlation between glucose/fructose discrepancy and hexokinase kinetic properties in different Saccharomyces cerevisiae wine yeast strains. Appl Microbiol Biotechnol77:1083–1091 [CrossRef][PubMed]
    [Google Scholar]
  2. Ciani M., Fatichenti F.. 1999; Selective sugar consumption by apiculate yeasts. Lett Appl Microbiol28:203–206 [CrossRef][PubMed]
    [Google Scholar]
  3. Coelho M.A., Gonçalves C., Sampaio J.P., Gonçalves P.. 2013; Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene. PLoS Genet9:e1003587 [CrossRef][PubMed]
    [Google Scholar]
  4. Csoma H., Sipiczki M.. 2008; Taxonomic reclassification of Candida stellata strains reveals frequent occurrence of Candida zemplinina in wine fermentation. FEMS Yeast Res8:328–336 [CrossRef][PubMed]
    [Google Scholar]
  5. Deàk T.. 2007; Yeasts in specific types of foods. In Handbook of Food Spoilage Yeasts, 2nd edn. pp.117–201 Edited by Deàk T.. Boca Raton: CRC Press; [CrossRef]
    [Google Scholar]
  6. Emmerich W., Radler F.. 1983; The anaerobic metabolism of glucose and fructose by Saccharomyces bailii . J Gen Microbiol129:3311–3318
    [Google Scholar]
  7. Galeote V., Bigey F., Devillers H., Neuvéglise C., Dequin S.. 2013; Genome sequence of the food spoilage yeast Zygosaccharomyces bailii CLIB 213T . Genome Announc1:e00606–13 [CrossRef][PubMed]
    [Google Scholar]
  8. Hall T.A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  9. Hoffman C.S., Winston F.. 1987; A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene57:267–272 [CrossRef][PubMed]
    [Google Scholar]
  10. Kurtzman C.P.. 2003; Phylogenetic circumscription of SaccharomycesKluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera LachanceaNakaseomycesNaumoviaVanderwaltozymaZygotorulaspora. FEMS Yeast Res4:233–245 [CrossRef][PubMed]
    [Google Scholar]
  11. Kurtzman C.P.. 2011; Starmerella Rosa & Lachance (1998). In The Yeasts: A Taxonomic Studyvol. 2, 5th edn. pp.538–542 Edited by Kurtzman C. P., Fell J. W., Boekhout T.. Amsterdam: Elsevier;
    [Google Scholar]
  12. Kurtzman C.P., Robnett C.J.. 2003; Phylogenetic relationships among yeasts of the ‘Saccharomyces complex’ determined from multigene sequence analyses. FEMS Yeast Res3:417–432 [CrossRef][PubMed]
    [Google Scholar]
  13. Kurtzman C.P., Robnett C.J., Basehoar-Powers E.. 2001; Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from ‘Kombucha tea’. FEMS Yeast Res1:133–138 [CrossRef][PubMed]
    [Google Scholar]
  14. Lazar Z., Dulermo T., Neuvéglise C., Crutz-Le Coq A.M., Nicaud J.M.. 2014; Hexokinase – a limiting factor in lipid production from fructose in Yarrowia lipolytica. Metab Eng 26C89–99 [CrossRef][PubMed]
    [Google Scholar]
  15. Leandro M.J., Fonseca C., Gonçalves P.. 2009; Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res9:511–525 [CrossRef][PubMed]
    [Google Scholar]
  16. Leandro M.J., Sychrová H., Prista C., Loureiro-Dias M.C.. 2011; The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters. Microbiology157:601–608 [CrossRef][PubMed]
    [Google Scholar]
  17. Leandro M.J., Sychrová H., Prista C., Loureiro-Dias M.C.. 2013; ZrFsy1, a high-affinity fructose/H+ symporter from fructophilic yeast Zygosaccharomyces rouxii . PLoS One8:e68165 [CrossRef][PubMed]
    [Google Scholar]
  18. Leandro M.J., Cabral S., Prista C., Loureiro-Dias M.C., Sychrová H.. 2014; The high-capacity specific fructose facilitator ZrFfz1 is essential for the fructophilic behavior of Zygosaccharomyces rouxii CBS 732T . Eukaryot Cell13:1371–1379 [CrossRef][PubMed]
    [Google Scholar]
  19. Lee D.H., Kim S.J., Seo J.H.. 2014; Molecular cloning and characterization of two novel fructose-specific transporters from the osmotolerant and fructophilic yeast Candida magnoliae JH110. Appl Microbiol Biotechnol98:3569–3578 [CrossRef][PubMed]
    [Google Scholar]
  20. Liccioli T., Chambers P.J., Jiranek V.. 2011; A novel methodology independent of fermentation rate for assessment of the fructophilic character of wine yeast strains. J Ind Microbiol Biotechnol38:833–843 [CrossRef][PubMed]
    [Google Scholar]
  21. Loureiro-Dias M.C., Peinado J.M.. 1984; Transport of maltose in Saccharomyces cerevisiae. Effect of pH and potassium ions. Biochem J222:293–298[PubMed][CrossRef]
    [Google Scholar]
  22. Magyar I., Tóth T.. 2011; Comparative evaluation of some oenological properties in wine strains of Candida stellataCandida zemplininaSaccharomyces uvarumSaccharomyces cerevisiae. Food Microbiol28:94–100 [CrossRef][PubMed]
    [Google Scholar]
  23. Martorell P., Stratford M., Steels H., Fernández-Espinar M.T., Querol A.. 2007; Physiological characterization of spoilage strains of Zygosaccharomyces bailii Zygosaccharomyces rouxii isolated from high sugar environments. Int J Food Microbiol114:234–242 [CrossRef][PubMed]
    [Google Scholar]
  24. Mira N.P., Münsterkötter M., Dias-Valada F., Santos J., Palma M., Roque F.C., Guerreiro J.F., Rodrigues F., Sousa M.J., other authors. 2014; The genome sequence of the highly acetic acid-tolerant Zygosaccharomyces bailii-derived interspecies hybrid strain ISA1307, isolated from a sparkling wine plant. DNA Res21:299–313 [CrossRef][PubMed]
    [Google Scholar]
  25. Pina C., Gonçalves P., Prista C., Loureiro-Dias M.C.. 2004; Ffz1, a new transporter specific for fructose from Zygosaccharomyces bailii. Microbiology150:2429–2433 [CrossRef][PubMed]
    [Google Scholar]
  26. Rosa C.A., Lachance M.A.. 1998; The yeast genus Starmerella gen. nov. and Starmerella bombicola sp. nov., the teleomorph of Candida bombicola (Spencer, Gorin & Tullock) Meyer & Yarrow. Int J Syst Bacteriol48:1413–1417 [CrossRef][PubMed]
    [Google Scholar]
  27. Rosa C., Lachance M.. 2005; Zygosaccharomyces machadoi sp. nov., a yeast species isolated from a nest of the stingless bee Tetragonisca angustula. Lundiana6:27–29
    [Google Scholar]
  28. Rosini G., Federici F., Martini A.. 1982; Yeast flora of grape berries during ripening. Microb Ecol8:83–89 [CrossRef][PubMed]
    [Google Scholar]
  29. Sá-Correia I., Guerreiro J.F., Loureiro-Dias M.C., Leão C., Côrte-Real M.. 2014; Zygosaccharomyces. In Encyclopedia of Food Microbiologyvol. 3, 2nd edn. pp.849–855 Edited by Batt C. A., Tortorello M.-L.. New York: Academic Press; [CrossRef]
    [Google Scholar]
  30. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  31. Saksinchai S., Suzuki M., Chantawannakul P., Ohkuma M., Lumyong S.. 2012; A novel ascosporogenous yeast species, Zygosaccharomyces siamensis, and the sugar tolerant yeasts associated with raw honey collected in Thailand. Fungal Divers52:123–139 [CrossRef]
    [Google Scholar]
  32. Sipiczki M.. 2003; Candida zemplinina sp. nov., an osmotolerant and psychrotolerant yeast that ferments sweet botrytized wines. Int J Syst Evol Microbiol53:2079–2083 [CrossRef][PubMed]
    [Google Scholar]
  33. Sipiczki M.. 2004; Species identification and comparative molecular and physiological analysis of Candida zemplinina Candida stellata. J Basic Microbiol44:471–479 [CrossRef][PubMed]
    [Google Scholar]
  34. Sipiczki M., Ciani M., Csoma H.. 2005; Taxonomic reclassification of Candida stellata DBVPG 3827. Folia Microbiol (Praha)50:494–498 [CrossRef][PubMed]
    [Google Scholar]
  35. Soden A., Francis I.L., Oakey H., Henschke P.A.. 2000; Effects of co-fermentation with Candida stellata accharomyces cerevisiae on the aroma and composition of Chardonnay wine. Aust J Grape Wine Res6:21–30 [CrossRef]
    [Google Scholar]
  36. Solieri L., Giudici P.. 2008; Yeasts associated to traditional balsamic vinegar: ecological and technological features. Int J Food Microbiol125:36–45 [CrossRef][PubMed]
    [Google Scholar]
  37. Solieri L., Chand Dakal T., Giudici P.. 2013; Zygosaccharomyces sapaep. nov., isolated from Italian traditional balsamic vinegar. Int J Syst Evol Microbiol63:364–371 [CrossRef][PubMed]
    [Google Scholar]
  38. Sols A.. 1956; Selective fermentation and phosphorylation of sugars by sauternes yeast. Biochim Biophys Acta20:62–68 [CrossRef][PubMed]
    [Google Scholar]
  39. Sousa-Dias S.. 2000; Aspectos da utilização de açúcares por Zygosaccharomyces bailii, uma levedura de alteração alimentar PhD thesis Universidade de Lisboa; Lisbon, Portugal:
    [Google Scholar]
  40. Sousa-Dias S., Gonçalves T., Levya J.S., Peinado J.M., Loureiro-Dias M.C.. 1996; Kinetics and regulation of fructose and glucose transport systems are responsible for fructophily in Zygosaccharomyces bailii. Microbiology142:1733–1738 [CrossRef]
    [Google Scholar]
  41. Steels H., James S.A., Roberts I.N., Stratford M.. 1999; Zygosaccharomyces lentus: a significant new osmophilic, preservative-resistant spoilage yeast, capable of growth at low temperature. J Appl Microbiol87:520–527 [CrossRef][PubMed]
    [Google Scholar]
  42. Steels H., James S.A., Bond C.J., Roberts I.N., Stratford M.. 2002; Zygosaccharomyces kombuchaensis: the physiology of a new species related to the spoilage yeasts Zygosaccharomyces lentusZygosaccharomyces bailii. FEMS Yeast Res2:113–121[PubMed]
    [Google Scholar]
  43. Sütterlin K.A.. 2010; Fructophilic yeasts to cure stuck fermentations in alcoholic beverages PhD thesis Stellenbosch University; Capetown, South Africa:
    [Google Scholar]
  44. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  45. Thompson J.D., Higgins D.G., Gibson T.J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  46. Torriani S., Lorenzini M., Salvetti E., Felis G.E.. 2011; Zygosaccharomyces gambellarensis sp. nov., an ascosporogenous yeast isolated from an Italian ‘passito’ style wine. Int J Syst Evol Microbiol61:3084–3088 [CrossRef][PubMed]
    [Google Scholar]
  47. Yu J.H., Lee D.H., Oh Y.J., Han K.C., Ryu Y.W., Seo J.H.. 2006; Selective utilization of fructose to glucose by Candida magnoliae, an erythritol producer. Appl Biochem Biotechnol131:870–879 [CrossRef][PubMed]
    [Google Scholar]
  48. Zuehlke J., Childs B., Edwards C.. 2015; Evaluation of Zygosaccharomyces bailii to metabolize residual sugar present in partially-fermented red wines. Fermentation1:3–12 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000154
Loading
/content/journal/micro/10.1099/mic.0.000154
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error