1887

Abstract

Probiotics are bacteria used in the food industry due to their potential health benefits. In this study, the plasma membrane of the probiotic La-5 was investigated using state-of-the-art high-resolution shotgun lipidomics. Comparisons of the lipidome of the plasma membrane were done after altering the fatty acid composition by supplementing La-5 with saturated, mono-, di- and tri-unsaturated fatty acids during fermentation. The plasma membrane with the highest degree of saturation resulted in a lipid composition with the highest proportion of cardiolipin (CL) and lowest proportion of monolysocardiolipin (MLCL). No significant changes were found for other lipid classes. The bacteria grown with di- and tri-unsaturated fatty acids were expected to have more unsaturated plasma membranes than bacteria grown with mono-unsaturated fatty acids. This was also the case for MLCL, but the numbers of double bonds for CL were quite similar for these three samples. The results indicate that La-5 possesses a molecular mechanism for remodelling and optimizing the fatty acid composition of CL and MLCL species and the molar ratio of CL and MLCL. This study contributes new knowledge on the previously uninvestigated lipidome of La-5.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000145
2015-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/10/1990.html?itemId=/content/journal/micro/10.1099/mic.0.000145&mimeType=html&fmt=ahah

References

  1. Almeida R. , Pauling J.K. , Sokol E. , Hannibal-Bach H.K. , Ejsing C.S. . ( 2015;). Comprehensive lipidome analysis by shotgun lipidomics on a hybrid quadrupole-orbitrap-linear ion trap mass spectrometer. J Am Soc Mass Spectrom 26: 133–148 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altermann E. , Russell W.M. , Azcarate-Peril M.A. , Barrangou R. , Buck B.L. , McAuliffe O. , Souther N. , Dobson A. , Duong T. . ( 2005;). Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102: 3906–3912 [CrossRef] [PubMed].
    [Google Scholar]
  3. Calvano C.D. , Zambonin C.G. , Palmisano F. . ( 2011;). Lipid fingerprinting of gram-positive lactobacilli by intact–matrix-assisted laser desorption/ionization mass spectrometry using a proton sponge based matrix. Rapid Commun Mass Spectrom 25: 1757–1764 [CrossRef] [PubMed].
    [Google Scholar]
  4. Corcoran B.M. , Stanton C. , Fitzgerald G.F. , Ross R.P. . ( 2007;). Growth of probiotic lactobacilli in the presence of oleic acid enhances subsequent survival in gastric juice. Microbiology 153: 291–299 [CrossRef] [PubMed].
    [Google Scholar]
  5. De Man J. , Rogosa D. , Sharpe M.E. . ( 1960;). A medium for the cultivation of lactobacilli. J Appl Bacteriol 23: 130–135 [CrossRef]
    [Google Scholar]
  6. Drucker D.B. , Megson G. , Harty D.W. , Riba I. , Gaskell S.J. . ( 1995;). Phospholipids of Lactobacillus spp. J Bacteriol 177: 6304–6308 [PubMed]
    [Google Scholar]
  7. Ejsing C.S. , Sampaio J.L. , Surendranath V. , Duchoslav E. , Ekroos K. , Klemm R.W. , Simons K. , Shevchenko A. . ( 2009;). Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A 106: 2136–2141 [CrossRef] [PubMed].
    [Google Scholar]
  8. Exterkate F.A. , Otten B.J. , Wassenberg H.W. , Veerkamp J.H. . ( 1971;). Comparison of the phospholipid composition of Bifidobacterium and Lactobacillus strains. J Bacteriol 106: 824–829 [PubMed]
    [Google Scholar]
  9. Fernández Murga M.L. , Font de Valdez G. , Disalvo E.A. . ( 2001;). Effect of lipid composition on the stability of cellular membranes during freeze-thawing of Lactobacillus acidophilus grown at different temperatures. Arch Biochem Biophys 388: 179–184 [CrossRef].
    [Google Scholar]
  10. García A.H. . ( 2011;). Anhydrobiosis in bacteria: from physiology to applications. J Biosci 36: 939–950 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hansen M.L. , Petersen M.A. , Risbo J. , Hümmer M. , Clausen A. . ( 2015;). Implications of modifying membrane fatty acid composition on membrane oxidation, integrity, and storage viability of freeze-dried probiotic, Lactobacillus acidophilus La-5. Biotechnol Prog 31: 799–807 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hölzl G. , Dörmann P. . ( 2007;). Structure and function of glycoglycerolipids in plants and bacteria. Prog Lipid Res 46: 225–243 [CrossRef] [PubMed].
    [Google Scholar]
  13. Husen P. , Tarasov K. , Katafiasz M. , Sokol E. , Vogt J. , Baumgart J. , Nitsch R. , Ekroos K. , Ejsing C.S. . ( 2013;). Analysis of lipid experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data. PLoS One 8: e79736 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kankaanpää P. , Yang B. , Kallio H. , Isolauri E. , Salminen S. . ( 2004;). Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of lactobacilli. Appl Environ Microbiol 70: 129–136 [CrossRef] [PubMed].
    [Google Scholar]
  15. Li C. , Zhao J. , Wang Y. , Han X. , Liu N. . ( 2009;). Synthesis of cyclopropane fatty acid and its effect on freeze-drying survival of Lactobacillus bulgaricus L2 at different growth conditions. World J Microbiol Biotechnol 25: 1659–1665 [CrossRef]
    [Google Scholar]
  16. Liu X.T. , Hou C.L. , Zhang J. , Zeng X.F. , Qiao S.Y. . ( 2014;). Fermentation conditions influence the fatty acid composition of the membranes of Lactobacillus reuteri I5007 and its survival following freeze-drying. Lett Appl Microbiol 59: 398–403 [CrossRef] [PubMed].
    [Google Scholar]
  17. Louesdon S. , Charlot-Rougé S. , Tourdot-Maréchal R. , Bouix M. , Béal C. . ( 2015;). Membrane fatty acid composition and fluidity are involved in the resistance to freezing of Lactobacillus buchneri R1102 and Bifidobacterium longum R0175. Microb Biotechnol 8: 311–318 [PubMed] [CrossRef]
    [Google Scholar]
  18. Machado M.C. , López C.S. , Heras H. , Rivas E.A. . ( 2004;). Osmotic response in Lactobacillus casei ATCC 393: biochemical and biophysical characteristics of membrane. Arch Biochem Biophys 422: 61–70 [CrossRef] [PubMed].
    [Google Scholar]
  19. Muller J.A. , Ross R.P. , Sybesma W.F.H. , Fitzgerald G.F. , Stanton C. . ( 2011;). Modification of the technical properties of Lactobacillus johnsonii NCC 533 by supplementing the growth medium with unsaturated fatty acids. Appl Environ Microbiol 77: 6889–6898 [CrossRef] [PubMed].
    [Google Scholar]
  20. Murga M.L.F. , Cabrera G.M. , De Valdez G.F. , Disalvo A. , Seldes A.M. . ( 2000;). Influence of growth temperature on cryotolerance and lipid composition of Lactobacillus acidophilus . J Appl Microbiol 88: 342–348 [CrossRef] [PubMed].
    [Google Scholar]
  21. Naidu A.S. , Bidlack W.R. , Clemens R.A. . ( 1999;). Probiotic spectra of lactic acid bacteria (LAB). Crit Rev Food Sci Nutr 39: 13–126 [CrossRef] [PubMed].
    [Google Scholar]
  22. Partanen L. , Marttinen N. , Alatossava T. . ( 2001;). Fats and fatty acids as growth factors for Lactobacillus delbrueckii . Syst Appl Microbiol 24: 500–506 [CrossRef] [PubMed].
    [Google Scholar]
  23. Powell G.L. , Marsh D. . ( 1985;). Polymorphic phase behavior of cardiolipin derivatives studied by 31P NMR and X-ray diffraction. Biochemistry 24: 2902–2908 [CrossRef] [PubMed].
    [Google Scholar]
  24. Rozès N. , Garbay S. , Denayrolles M. , Lonvaudfunel A. . ( 1993;). A rapid method for the determination of bacterial fatty-acid composition. Lett Appl Microbiol 17: 126–131 [CrossRef]
    [Google Scholar]
  25. Sankaram M.B. , Powell G.L. , Marsh D. . ( 1989;). Effect of acyl chain composition on salt-induced lamellar to inverted hexagonal phase transitions in cardiolipin. Biochim Biophys Acta 980: 389–392 [CrossRef] [PubMed].
    [Google Scholar]
  26. Schwudke D. , Oegema J. , Burton L. , Entchev E. , Hannich J.T. , Ejsing C.S. , Kurzchalia T. , Shevchenko A. . ( 2006;). Lipid profiling by multiple precursor and neutral loss scanning driven by the data-dependent acquisition. Anal Chem 78: 585–595 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tymczyszyn E.E. , Gómez-Zavaglia A. , Disalvo E.A. . ( 2005;). Influence of the growth at high osmolality on the lipid composition, water permeability and osmotic response of Lactobacillus bulgaricus . Arch Biochem Biophys 443: 66–73 [CrossRef] [PubMed].
    [Google Scholar]
  28. Wang Y. , Corrieu G. , Béal C. . ( 2005a;). Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758. J Dairy Sci 88: 21–29 [CrossRef] [PubMed].
    [Google Scholar]
  29. Wang Y. , Delettre J. , Guillot A. , Corrieu G. , Béal C. . ( 2005b;). Influence of cooling temperature and duration on cold adaptation of Lactobacillus acidophilus RD758. Cryobiology 50: 294–307.[PubMed].[CrossRef]
    [Google Scholar]
  30. Zhang Y.M. , Rock C.O. . ( 2008;). Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6: 222–233 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000145
Loading
/content/journal/micro/10.1099/mic.0.000145
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error