1887

Abstract

Ixotrophy is a process that enables certain microbes to prey on other cells. The ability of cells to aggregate or adhere is thought to be a significant initial step in ixotrophy. The gliding, multicellular filamentous bacterium sp. CCB-QB1 belongs to the family and preys on bacteria such as sp. in seawater. Adhesion and cell aggregation were coincident with preying and were hypothesized to play an important role in the ixotrophy in this bacterium. To test this hypothesis, experiments to elucidate the mechanisms of aggregation or adhesion in this bacterium were performed. The ability of QB1 to adhere and aggregate to prey bacterium, sp., required divalent cations, especially calcium ions. In the presence of calcium, QB1 cells captured 99 % of sp. cells after 60 min of incubation. Toluidine blue O, which binds acidic polysaccharides, bound to QB1 and inhibited adhesion of QB1. These results suggest that acidic polysaccharides are needed for aggregation or adhesion of and that calcium ions play a significant role in these phenomena.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000158
2015-10-01
2020-02-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/10/1933.html?itemId=/content/journal/micro/10.1099/mic.0.000158&mimeType=html&fmt=ahah

References

  1. Aizawa S.-I.. 2005; Bacterial gliding motility: visualizing invisible machinery. ASM News71:71–76
    [Google Scholar]
  2. Aizawa S.-I.. 2013; The Flagellar World: ElectronMmicroscopic Images of Bacterial Flagella and Related Surface Structures Oxford: Academic Press;
    [Google Scholar]
  3. Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., other authors, The R.A.S.T.. 2008; Server: rapid annotations using subsystems technology. BMC Genomics9:75 [CrossRef][PubMed]
    [Google Scholar]
  4. Bourret R.B., Charon N.W., Stock A.M., West A.H.. 2002; Bright lights, abundant operons—fluorescence and genomic technologies advance studies of bacterial locomotion and signal transduction: review of the BLAST meeting, Cuernavaca, Mexico, 14 to 19 January 2001. J Bacteriol184:1–17 [CrossRef][PubMed]
    [Google Scholar]
  5. Burnham J.C., Hashimoto T., Conti S.F.. 1968; Electron microscopic observations on the penetration of Bdellovibrio bacteriovorus into gram-negative bacterial hosts. J Bacteriol96:1366–1381[PubMed]
    [Google Scholar]
  6. Burnham J.C., Collart S.A., Highison B.W.. 1981; Entrapment and lysis of the cyanobacterium Phormidium luridum by aqueous colonies of Myxococcus xanthus PCO2. Arch Microbiol129:285–294 [CrossRef]
    [Google Scholar]
  7. Casida L.E.. 1982; Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol32:339–345 [CrossRef]
    [Google Scholar]
  8. Decostere A., Haesebrouck F., Turnbull J.F., Charlier G.. 1999; Influence of water quality and temperature on adhesion of high and low virulence Flavobacterium columnare strains to isolated gill arches. J Fish Dis22:1–11 [CrossRef]
    [Google Scholar]
  9. Duchaud E., Boussaha M., Loux V., Bernardet J.F., Michel C., Kerouault B., Mondot S., Nicolas P., Bossy R., other authors. 2007; Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat Biotechnol25:763–769 [CrossRef][PubMed]
    [Google Scholar]
  10. Dworkin M.. 1996; Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev60:70–102[PubMed]
    [Google Scholar]
  11. Esteve I., Gaju N.. 1999; Bacterial symbioses. Predation and mutually beneficial associations. Int Microbiol2:81–86[PubMed]
    [Google Scholar]
  12. Fremgen S.A., Burke N.S., Hartzell P.L.. 2010; Effects of site-directed mutagenesis of mglA on motility and swarming of Myxococcus xanthus. BMC Microbiol10:295 [CrossRef][PubMed]
    [Google Scholar]
  13. Furusawa G., Yoshikawa T., Yasuda A., Sakata T.. 2003; Algicidal activity and gliding motility of Saprospira sp. SS98-5. Can J Microbiol49:92–100 [CrossRef][PubMed]
    [Google Scholar]
  14. Furusawa G., Dziewanowska K., Stone H., Settles M., Hartzell P.. 2011; Global analysis of phase variation in Myxococcus xanthus. Mol Microbiol81:784–804 [CrossRef][PubMed]
    [Google Scholar]
  15. Furusawa G., Lau N.-S., Shu-Chien A.C., Jaya-Ram A., Amirul A.-A.A.. 2015; Identification of polyunsaturated fatty acid and diterpenoid biosynthesis pathways from draft genome of Aureispira sp. CCB-QB1. Mar Genomics19:39–44 [CrossRef][PubMed]
    [Google Scholar]
  16. Geesey G.G., Wigglesworth-Cooksey B., Cooksey K.E.. 2000; Influence of calcium and other cations on surface adhesion of bacteria and diatoms: a review. Biofouling15:195–205 [CrossRef][PubMed]
    [Google Scholar]
  17. Guerrero R., Pedrós-Alio C., Esteve I., Mas J., Chase D., Margulis L.. 1986; Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc Natl Acad Sci U S A83:2138–2142 [CrossRef][PubMed]
    [Google Scholar]
  18. Gumbo R.J., Ross G., Cloete E.T.. 2008; Biological control of Microcystis dominated harmful algal blooms. Afr J Biotechnol7:4765–4773
    [Google Scholar]
  19. Hosoya S., Arunpairojana V., Suwannachart C., Kanjana-Opas A., Yokota A.. 2006; Aureispira marina gen. nov., sp. nov., a gliding, arachidonic acid-containing bacterium isolated from the southern coastline of Thailand. Int J Syst Evol Microbiol56:2931–2935 [CrossRef][PubMed]
    [Google Scholar]
  20. Hultgren S.J., Normark S., Abraham S.N.. 1991; Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu Rev Microbiol45:383–415 [CrossRef][PubMed]
    [Google Scholar]
  21. Imai I., Ishida Y., Hata Y.. 1993; Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan. Mar Biol116:527–532 [CrossRef]
    [Google Scholar]
  22. Lewin R.A.. 1997; Saprospira grandis: A flexibacterium that can catch bacterial prey by ixotrophy. Microb Ecol34:232–236 [CrossRef][PubMed]
    [Google Scholar]
  23. Michiels K.W., Croes C.L., Vanderleyden J.. 1991; Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol137:2241–2246 [CrossRef]
    [Google Scholar]
  24. Nichols C.M., Lardière S.G., Bowman J.P., Nichols P.D., Gibson J.E.A., Guézennec J.. 2005; Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol49:578–589 [CrossRef][PubMed]
    [Google Scholar]
  25. O'Toole G.A., Kolter R.. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol30:295–304 [CrossRef][PubMed]
    [Google Scholar]
  26. Pizarro-Cerdá J., Cossart P.. 2006; Bacterial adhesion and entry into host cells. Cell124:715–727 [CrossRef][PubMed]
    [Google Scholar]
  27. Quinn G.R., Skerman V.B.D.. 1980; Herpetosiphon – nature's scavenger?. Curr Microbiol4:57–62 [CrossRef]
    [Google Scholar]
  28. Rashidan K.K., Bird D.F.. 2001; Role of predatory bacteria in the termination of a cyanobacterial bloom. Microb Ecol41:97–105[PubMed]
    [Google Scholar]
  29. Rehm B.H.A., Valla S.. 1997; Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol48:281–288 [CrossRef][PubMed]
    [Google Scholar]
  30. Remminghorst U., Rehm B.H.A.. 2006; Bacterial alginates: from biosynthesis to applications. Biotechnol Lett28:1701–1712 [CrossRef][PubMed]
    [Google Scholar]
  31. Riley L.M., Weadge J.T., Baker P., Robinson H., Codée J.D.C., Tipton P.A., Ohman D.E., Howell P.L.. 2013; Structural and functional characterization of Pseudomonas aeruginosa AlgX: role of AlgX in alginate acetylation. J Biol Chem288:22299–22314 [CrossRef][PubMed]
    [Google Scholar]
  32. Romantschuk M., Bamford D.H.. 1986; The causal agent of halo blight in bean, Pseudomonas syringae pv. phaseolicola, attaches to stomata via its pili. Microb Pathog1:139–148 [CrossRef][PubMed]
    [Google Scholar]
  33. Sakata T.. 1990; Occurrence of marine Saprospira sp. possessing algicidal activity for diatoms. Nippon Suisan Gakk56:1165
    [Google Scholar]
  34. Sangkhobol V., Skerman V.B.D.. 1981; Saprospira species—natural predators. Curr Microbiol5:169–174 [CrossRef]
    [Google Scholar]
  35. Sockett R.E.. 2009; Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol63:523–539 [CrossRef][PubMed]
    [Google Scholar]
  36. Thomashow M.F., Cotter T.W.. 1992; Bdellovibrio host dependence: the search for signal molecules and genes that regulate the intraperiplasmic growth cycle. J Bacteriol174:5767–5771[PubMed]
    [Google Scholar]
  37. Wood P.J., Fulcher R.G.. 1978; Interaction of some dyes with cereal beta-glucans. Cereal Chem55:952–966
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000158
Loading
/content/journal/micro/10.1099/mic.0.000158
Loading

Data & Media loading...

Supplements

Supplementary Data

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error