1887

Abstract

Ixotrophy is a process that enables certain microbes to prey on other cells. The ability of cells to aggregate or adhere is thought to be a significant initial step in ixotrophy. The gliding, multicellular filamentous bacterium sp. CCB-QB1 belongs to the family and preys on bacteria such as sp. in seawater. Adhesion and cell aggregation were coincident with preying and were hypothesized to play an important role in the ixotrophy in this bacterium. To test this hypothesis, experiments to elucidate the mechanisms of aggregation or adhesion in this bacterium were performed. The ability of QB1 to adhere and aggregate to prey bacterium, sp., required divalent cations, especially calcium ions. In the presence of calcium, QB1 cells captured 99 % of sp. cells after 60 min of incubation. Toluidine blue O, which binds acidic polysaccharides, bound to QB1 and inhibited adhesion of QB1. These results suggest that acidic polysaccharides are needed for aggregation or adhesion of and that calcium ions play a significant role in these phenomena.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000158
2015-10-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/10/1933.html?itemId=/content/journal/micro/10.1099/mic.0.000158&mimeType=html&fmt=ahah

References

  1. Aizawa S.-I.. ( 2005;). Bacterial gliding motility: visualizing invisible machinery. ASM News 71: 71–76.
    [Google Scholar]
  2. Aizawa S.-I.. ( 2013;). The Flagellar World: ElectronMmicroscopic Images of Bacterial Flagella and Related Surface Structures Oxford: Academic Press;.
    [Google Scholar]
  3. Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., other authors, The R.A.S.T.. ( 2008;). Server: rapid annotations using subsystems technology. BMC Genomics 9: 75 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bourret R.B., Charon N.W., Stock A.M., West A.H.. ( 2002;). Bright lights, abundant operons—fluorescence and genomic technologies advance studies of bacterial locomotion and signal transduction: review of the BLAST meeting, Cuernavaca, Mexico, 14 to 19 January 2001. J Bacteriol 184: 1–17 [CrossRef] [PubMed].
    [Google Scholar]
  5. Burnham J.C., Hashimoto T., Conti S.F.. ( 1968;). Electron microscopic observations on the penetration of Bdellovibrio bacteriovorus into gram-negative bacterial hosts. J Bacteriol 96: 1366–1381 [PubMed].
    [Google Scholar]
  6. Burnham J.C., Collart S.A., Highison B.W.. ( 1981;). Entrapment and lysis of the cyanobacterium Phormidium luridum by aqueous colonies of Myxococcus xanthus PCO2. Arch Microbiol 129: 285–294 [CrossRef].
    [Google Scholar]
  7. Casida L.E.. ( 1982;). Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Bacteriol 32: 339–345 [CrossRef].
    [Google Scholar]
  8. Decostere A., Haesebrouck F., Turnbull J.F., Charlier G.. ( 1999;). Influence of water quality and temperature on adhesion of high and low virulence Flavobacterium columnare strains to isolated gill arches. J Fish Dis 22: 1–11 [CrossRef].
    [Google Scholar]
  9. Duchaud E., Boussaha M., Loux V., Bernardet J.F., Michel C., Kerouault B., Mondot S., Nicolas P., Bossy R., other authors. ( 2007;). Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat Biotechnol 25: 763–769 [CrossRef] [PubMed].
    [Google Scholar]
  10. Dworkin M.. ( 1996;). Recent advances in the social and developmental biology of the myxobacteria. Microbiol Rev 60: 70–102 [PubMed].
    [Google Scholar]
  11. Esteve I., Gaju N.. ( 1999;). Bacterial symbioses. Predation and mutually beneficial associations. Int Microbiol 2: 81–86 [PubMed].
    [Google Scholar]
  12. Fremgen S.A., Burke N.S., Hartzell P.L.. ( 2010;). Effects of site-directed mutagenesis of mglA on motility and swarming of Myxococcus xanthus. BMC Microbiol 10: 295 [CrossRef] [PubMed].
    [Google Scholar]
  13. Furusawa G., Yoshikawa T., Yasuda A., Sakata T.. ( 2003;). Algicidal activity and gliding motility of Saprospira sp. SS98-5. Can J Microbiol 49: 92–100 [CrossRef] [PubMed].
    [Google Scholar]
  14. Furusawa G., Dziewanowska K., Stone H., Settles M., Hartzell P.. ( 2011;). Global analysis of phase variation in Myxococcus xanthus. Mol Microbiol 81: 784–804 [CrossRef] [PubMed].
    [Google Scholar]
  15. Furusawa G., Lau N.-S., Shu-Chien A.C., Jaya-Ram A., Amirul A.-A.A.. ( 2015;). Identification of polyunsaturated fatty acid and diterpenoid biosynthesis pathways from draft genome of Aureispira sp. CCB-QB1. Mar Genomics 19: 39–44 [CrossRef] [PubMed].
    [Google Scholar]
  16. Geesey G.G., Wigglesworth-Cooksey B., Cooksey K.E.. ( 2000;). Influence of calcium and other cations on surface adhesion of bacteria and diatoms: a review. Biofouling 15: 195–205 [CrossRef] [PubMed].
    [Google Scholar]
  17. Guerrero R., Pedrós-Alio C., Esteve I., Mas J., Chase D., Margulis L.. ( 1986;). Predatory prokaryotes: predation and primary consumption evolved in bacteria. Proc Natl Acad Sci U S A 83: 2138–2142 [CrossRef] [PubMed].
    [Google Scholar]
  18. Gumbo R.J., Ross G., Cloete E.T.. ( 2008;). Biological control of Microcystis dominated harmful algal blooms. Afr J Biotechnol 7: 4765–4773.
    [Google Scholar]
  19. Hosoya S., Arunpairojana V., Suwannachart C., Kanjana-Opas A., Yokota A.. ( 2006;). Aureispira marina gen. nov., sp. nov., a gliding, arachidonic acid-containing bacterium isolated from the southern coastline of Thailand. Int J Syst Evol Microbiol 56: 2931–2935 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hultgren S.J., Normark S., Abraham S.N.. ( 1991;). Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu Rev Microbiol 45: 383–415 [CrossRef] [PubMed].
    [Google Scholar]
  21. Imai I., Ishida Y., Hata Y.. ( 1993;). Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal sea of Japan. Mar Biol 116: 527–532 [CrossRef].
    [Google Scholar]
  22. Lewin R.A.. ( 1997;). Saprospira grandis: A flexibacterium that can catch bacterial prey by ixotrophy. Microb Ecol 34: 232–236 [CrossRef] [PubMed].
    [Google Scholar]
  23. Michiels K.W., Croes C.L., Vanderleyden J.. ( 1991;). Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137: 2241–2246 [CrossRef].
    [Google Scholar]
  24. Nichols C.M., Lardière S.G., Bowman J.P., Nichols P.D., Gibson J.E.A., Guézennec J.. ( 2005;). Chemical characterization of exopolysaccharides from Antarctic marine bacteria. Microb Ecol 49: 578–589 [CrossRef] [PubMed].
    [Google Scholar]
  25. O'Toole G.A., Kolter R.. ( 1998;). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30: 295–304 [CrossRef] [PubMed].
    [Google Scholar]
  26. Pizarro-Cerdá J., Cossart P.. ( 2006;). Bacterial adhesion and entry into host cells. Cell 124: 715–727 [CrossRef] [PubMed].
    [Google Scholar]
  27. Quinn G.R., Skerman V.B.D.. ( 1980;). Herpetosiphon – nature's scavenger?. Curr Microbiol 4: 57–62 [CrossRef].
    [Google Scholar]
  28. Rashidan K.K., Bird D.F.. ( 2001;). Role of predatory bacteria in the termination of a cyanobacterial bloom. Microb Ecol 41: 97–105 [PubMed].
    [Google Scholar]
  29. Rehm B.H.A., Valla S.. ( 1997;). Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 48: 281–288 [CrossRef] [PubMed].
    [Google Scholar]
  30. Remminghorst U., Rehm B.H.A.. ( 2006;). Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28: 1701–1712 [CrossRef] [PubMed].
    [Google Scholar]
  31. Riley L.M., Weadge J.T., Baker P., Robinson H., Codée J.D.C., Tipton P.A., Ohman D.E., Howell P.L.. ( 2013;). Structural and functional characterization of Pseudomonas aeruginosa AlgX: role of AlgX in alginate acetylation. J Biol Chem 288: 22299–22314 [CrossRef] [PubMed].
    [Google Scholar]
  32. Romantschuk M., Bamford D.H.. ( 1986;). The causal agent of halo blight in bean, Pseudomonas syringae pv. phaseolicola, attaches to stomata via its pili. Microb Pathog 1: 139–148 [CrossRef] [PubMed].
    [Google Scholar]
  33. Sakata T.. ( 1990;). Occurrence of marine Saprospira sp. possessing algicidal activity for diatoms. Nippon Suisan Gakk 56: 1165.
    [Google Scholar]
  34. Sangkhobol V., Skerman V.B.D.. ( 1981;). Saprospira species—natural predators. Curr Microbiol 5: 169–174 [CrossRef].
    [Google Scholar]
  35. Sockett R.E.. ( 2009;). Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol 63: 523–539 [CrossRef] [PubMed].
    [Google Scholar]
  36. Thomashow M.F., Cotter T.W.. ( 1992;). Bdellovibrio host dependence: the search for signal molecules and genes that regulate the intraperiplasmic growth cycle. J Bacteriol 174: 5767–5771 [PubMed].
    [Google Scholar]
  37. Wood P.J., Fulcher R.G.. ( 1978;). Interaction of some dyes with cereal beta-glucans. Cereal Chem 55: 952–966.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000158
Loading
/content/journal/micro/10.1099/mic.0.000158
Loading

Data & Media loading...

Supplements

Supplementary Data



This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error