1887

Abstract

Here, the influence of metabolizable sugars on the susceptibility of to β-lactam antibiotics was investigated. Notably, monitoring growth and survival of mono- and combination-treated planktonic cultures showed a 1000- to 10 000-fold higher antibacterial efficacy of carbenicillin and cefuroxime in the presence of certain sugars, whereas other metabolites had no effect on β-lactam sensitivity. This effect was unrelated to changes in growth rate. Light microscopy and flow cytometry profiling revealed that bacterial filaments, formed due to β-lactam-mediated inhibition of cell division, rapidly appeared upon β-lactam mono-treatment and remained stable for up to 18 h. The presence of metabolizable sugars in the medium did not change the rate of filamentation, but led to lysis of the filaments within a few hours. No lysis occurred in mutants unable to metabolize the sugars, thus establishing sugar metabolism as an important factor influencing the bactericidal outcome of β-lactam treatment. Interestingly, the effect of sugar on β-lactam susceptibility was suppressed in a strain unable to synthesize the nutrient stress alarmone (p)ppGpp. Here, to the best of our knowledge, we demonstrate for the first time a specific and significant increase in β-lactam sensitivity due to sugar metabolism in planktonic, exponentially growing bacteria, unrelated to general nutrient availability or growth rate. Understanding the mechanisms underlying the nutritional influences on antibiotic sensitivity is likely to reveal new proteins or pathways that can be targeted by novel compounds, adding to the list of pharmacodynamic adjuvants that increase the efficiency and lifespan of conventional antibiotics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000152
2015-10-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/10/1999.html?itemId=/content/journal/micro/10.1099/mic.0.000152&mimeType=html&fmt=ahah

References

  1. Abranches J. , Martinez A.R. , Kajfasz J.K. , Chávez V. , Garsin D.A. , Lemos J.A. . ( 2009;). The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis . J Bacteriol 191: 2248–2256 [CrossRef] [PubMed].
    [Google Scholar]
  2. Allison K.R. , Brynildsen M.P. , Collins J.J. . ( 2011;). Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473: 216–220 [CrossRef] [PubMed].
    [Google Scholar]
  3. Aono R. , Yamasaki M. , Tamura G. . ( 1979;). High and selective resistance to mecillinam in adenylate cyclase-deficient or cyclic adenosine 3′,5′-monophosphate receptor protein-deficient mutants of Escherichia coli . J Bacteriol 137: 839–845 [PubMed].
    [Google Scholar]
  4. Bäcklund E. , Ignatushchenko M. , Larsson G. . ( 2011;). Suppressing glucose uptake and acetic acid production increases membrane protein overexpression in Escherichia coli . Microb Cell Fact 10: 35 [CrossRef] [PubMed].
    [Google Scholar]
  5. Barraud N. , Buson A. , Jarolimek W. , Rice S.A. . ( 2013;). Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS One 8: e84220 [CrossRef] [PubMed].
    [Google Scholar]
  6. Brown L. , Gentry D. , Elliott T. , Cashel M. . ( 2002;). DksA affects ppGpp induction of RpoS at a translational level. J Bacteriol 184: 4455–4465 [CrossRef] [PubMed].
    [Google Scholar]
  7. Chung H.S. , Yao Z. , Goehring N.W. , Kishony R. , Beckwith J. , Kahne D. . ( 2009;). Rapid β-lactam-induced lysis requires successful assembly of the cell division machinery. Proc Natl Acad Sci U S A 106: 21872–21877 [CrossRef] [PubMed].
    [Google Scholar]
  8. Curtis N.A. , Orr D. , Ross G.W. , Boulton M.G. . ( 1979;). Affinities of penicillins and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their antibacterial activity. Antimicrob Agents Chemother 16: 533–539 [CrossRef] [PubMed].
    [Google Scholar]
  9. D'Ari R. , Jaffé A. , Bouloc P. , Robin A. . ( 1988;). Cyclic AMP and cell division in Escherichia coli . J Bacteriol 170: 65–70 [PubMed].
    [Google Scholar]
  10. Desai T.A. , Rao C.V. . ( 2010;). Regulation of arabinose and xylose metabolism in Escherichia coli . Appl Environ Microbiol 76: 1524–1532 [CrossRef] [PubMed].
    [Google Scholar]
  11. Ejim L. , Farha M.A. , Falconer S.B. , Wildenhain J. , Coombes B.K. , Tyers M. , Brown E.D. , Wright G.D. . ( 2011;). Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol 7: 348–350 [CrossRef] [PubMed].
    [Google Scholar]
  12. Eng R.H. , Padberg F.T. , Smith S.M. , Tan E.N. , Cherubin C.E. . ( 1991;). Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Chemother 35: 1824–1828 [CrossRef] [PubMed].
    [Google Scholar]
  13. Epstein W. , Rothman-Denes L.B. , Hesse J. . ( 1975;). Adenosine 3′ : 5′-cyclic monophosphate as mediator of catabolite repression in Escherichia coli . Proc Natl Acad Sci U S A 72: 2300–2304 [CrossRef] [PubMed].
    [Google Scholar]
  14. Geiger T. , Kästle B. , Gratani F.L. , Goerke C. , Wolz C. . ( 2014;). Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions. J Bacteriol 196: 894–902 [CrossRef] [PubMed].
    [Google Scholar]
  15. Goltermann L. , Good L. , Bentin T. . ( 2013;). Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in Escherichia coli . J Biol Chem 288: 10483–10489 [CrossRef] [PubMed].
    [Google Scholar]
  16. Haseltine W.A. , Block R. , Gilbert W. , Weber K. . ( 1972;). MSI and MSII made on ribosome in idling step of protein synthesis. Nature 238: 381–384 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hill N.S. , Buske P.J. , Shi Y. , Levin P.A. . ( 2013;). A moonlighting enzyme links Escherichia coli cell size with central metabolism. PLoS Genet 9: e1003663 [CrossRef] [PubMed].
    [Google Scholar]
  18. Jaffé A. , Chabbert Y.A. , Derlot E. . ( 1983;). Selection and characterization of beta-lactam-resistant Escherichia coli K-12 mutants. Antimicrob Agents Chemother 23: 622–625 [CrossRef] [PubMed].
    [Google Scholar]
  19. Jaffé A. , D'Ari R. , Norris V. . ( 1986;). SOS-independent coupling between DNA replication and cell division in Escherichia coli . J Bacteriol 165: 66–71 [PubMed].
    [Google Scholar]
  20. Keren I. , Kaldalu N. , Spoering A. , Wang Y. , Lewis K. . ( 2004;). Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230: 13–18 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kumar S. . ( 1976;). Properties of adenyl cyclase and cyclic adenosine 3′,5′-monophosphate receptor protein-deficient mutants of Escherichia coli . J Bacteriol 125: 545–555 [PubMed].
    [Google Scholar]
  22. Ling L.L. , Schneider T. , Peoples A.J. , Spoering A.L. , Engels I. , Conlon B.P. , Mueller A. , Schäberle T.F. , Hughes D.E. , other authors . ( 2015;). A new antibiotic kills pathogens without detectable resistance. Nature 517: 455–459 [CrossRef] [PubMed].
    [Google Scholar]
  23. Magnusson L.U. , Gummesson B. , Joksimović P. , Farewell A. , Nyström T. . ( 2007;). Identical, independent, and opposing roles of ppGpp and DksA in Escherichia coli . J Bacteriol 189: 5193–5202 [CrossRef] [PubMed].
    [Google Scholar]
  24. Maisonneuve E. , Castro-Camargo M. , Gerdes K. . ( 2013;). (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154: 1140–1150 [CrossRef] [PubMed].
    [Google Scholar]
  25. Miller C. , Thomsen L.E. , Gaggero C. , Mosseri R. , Ingmer H. , Cohen S.N. . ( 2004;). SOS response induction by β-lactams and bacterial defense against antibiotic lethality. Science 305: 1629–1631 [CrossRef] [PubMed].
    [Google Scholar]
  26. Monahan L.G. , Hajduk I.V. , Blaber S.P. , Charles I.G. , Harry E.J. . ( 2014;). Coordinating bacterial cell division with nutrient availability: a role for glycolysis. MBio 5: e00935–-14 [CrossRef] [PubMed].
    [Google Scholar]
  27. Murphy H. , Cashel M. . ( 2003;). Isolation of RNA polymerase suppressors of a (p)ppGpp deficiency. Methods Enzymol 371: 596–601 [CrossRef] [PubMed].
    [Google Scholar]
  28. Neuhaus F.C. , Lynch J.L. . ( 1964;). The enzymatic synthesis of d-alanyl-d-alanine. 3. On the inhibition of d-alanyl-d-alanine synthetase by the antibiotic d-cycloserine. Biochemistry 3: 471–480 [CrossRef] [PubMed].
    [Google Scholar]
  29. Petersen A.M. , Nielsen E.M. , Litrup E. , Brynskov J. , Mirsepasi H. , Krogfelt K.A. . ( 2009;). A phylogenetic group of Escherichia coli associated with active left-sided inflammatory bowel disease. BMC Microbiol 9: 171 [CrossRef] [PubMed].
    [Google Scholar]
  30. Pomares M.F. , Vincent P.A. , Farías R.N. , Salomón R.A. . ( 2008;). Protective action of ppGpp in microcin J25-sensitive strains. J Bacteriol 190: 4328–4334 [CrossRef] [PubMed].
    [Google Scholar]
  31. Potrykus K. , Murphy H. , Philippe N. , Cashel M. . ( 2011;). ppGpp is the major source of growth rate control in E. coli . Environ Microbiol 13: 563–575 [CrossRef] [PubMed].
    [Google Scholar]
  32. Prax M. , Bertram R. . ( 2014;). Metabolic aspects of bacterial persisters. Front Cell Infect Microbiol 4: 148 [PubMed].[CrossRef]
    [Google Scholar]
  33. Prüss B.M. , Nelms J.M. , Park C. , Wolfe A.J. . ( 1994;). Mutations in NADH : ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J Bacteriol 176: 2143–2150 [PubMed].
    [Google Scholar]
  34. Rice K.C. , Nelson J.B. , Patton T.G. , Yang S.-J. , Bayles K.W. . ( 2005;). Acetic acid induces expression of the Staphylococcus aureus cidABC and lrgAB murein hydrolase regulator operons. J Bacteriol 187: 813–821 [CrossRef] [PubMed].
    [Google Scholar]
  35. Rodionov D.G. , Ishiguro E.E. . ( 1995;). Direct correlation between overproduction of guanosine 3′,5′-bispyrophosphate (ppGpp) and penicillin tolerance in Escherichia coli . J Bacteriol 177: 4224–4229 [PubMed].
    [Google Scholar]
  36. Seyfzadeh M. , Keener J. , Nomura M. . ( 1993;). spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli . Proc Natl Acad Sci U S A 90: 11004–11008 [CrossRef] [PubMed].
    [Google Scholar]
  37. Sezonov G. , Joseleau-Petit D. , D'Ari R. . ( 2007;). Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 189: 8746–8749 [CrossRef] [PubMed].
    [Google Scholar]
  38. Spratt B.G. . ( 1975;). Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci U S A 72: 2999–3003 [CrossRef] [PubMed].
    [Google Scholar]
  39. Staugaard P. , van den Berg F.M. , Woldringh C.L. , Nanninga N. . ( 1976;). Localization of ampicillin-sensitive sites in Escherichia coli by electron microscopy. J Bacteriol 127: 1376–1381 [PubMed].
    [Google Scholar]
  40. Stewart P.S. , Costerton J.W. . ( 2001;). Antibiotic resistance of bacteria in biofilms. Lancet 358: 135–138 [CrossRef] [PubMed].
    [Google Scholar]
  41. Utsumi R. , Noda M. , Kawamukai M. , Komano T. . ( 1989;). Control mechanism of the Escherichia coli K-12 cell cycle is triggered by the cyclic AMP-cyclic AMP receptor protein complex. J Bacteriol 171: 2909–2912 [PubMed].
    [Google Scholar]
  42. Weart R.B. , Lee A.H. , Chien A.-C. , Haeusser D.P. , Hill N.S. , Levin P.A. . ( 2007;). A metabolic sensor governing cell size in bacteria. Cell 130: 335–347 [CrossRef] [PubMed].
    [Google Scholar]
  43. Welch R.A. , Burland V. , Plunkett G. III , Redford P. , Roesch P. , Rasko D. , Buckles E.L. , Liou S.-R. , Boutin A. , other authors . ( 2002;). Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli . Proc Natl Acad Sci U S A 99: 17020–17024 [CrossRef] [PubMed].
    [Google Scholar]
  44. WHO ( 2014;). Antimicrobial Resistance: Global Report on Surveillance Geneva: World Health Organization;.
    [Google Scholar]
  45. Xiao H. , Kalman M. , Ikehara K. , Zemel S. , Glaser G. , Cashel M. . ( 1991;). Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266: 5980–5990 [PubMed].
    [Google Scholar]
  46. Yao Z. , Kahne D. , Kishony R. . ( 2012;). Distinct single-cell morphological dynamics under beta-lactam antibiotics. Mol Cell 48: 705–712 [CrossRef] [PubMed].
    [Google Scholar]
  47. Zuroff T.R. , Bernstein H. , Lloyd-Randolfi J. , Jimenez-Taracido L. , Stewart P.S. , Carlson R.P. . ( 2010;). Robustness analysis of culturing perturbations on Escherichia coli colony biofilm beta-lactam and aminoglycoside antibiotic tolerance. BMC Microbiol 10: 185 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000152
Loading
/content/journal/micro/10.1099/mic.0.000152
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error