1887

Abstract

Using a combined chromatography method, we simultaneously purified three protein fractions (II-2, II-3 and II-4) with 1,3-β-glucanase activity from extraction of pilei of fruiting bodies. MALDI-TOF/TOF amino acid sequencing showed that these three fractions matched a putative exo-1,3-β-glucanase, a putative glucan 1,3-β-glucosidase and a putative glycosyl hydrolase family 16 protein annotated in the genome, respectively; however, they were characterized as a 1,3-β-glucosidase, an exo-1,3-β-glucanase and an endo-1,3-β-glucanase, respectively, by analysis of their substrate specificities and modes of action. This study explored how these three 1,3-β-glucoside hydrolases synergistically acted on laminarin: the endo-1,3-β-glucanase hydrolysed internal glycosidic bonds of laminarin to generate 1,3-β-oligosaccharides of various lengths, the exo-1,3-β-glucanase cleaved the longer-chain laminarioligosaccharides into short-chain disaccharides, laminaribiose and gentiobiose, and the 1,3-β-glucosidase further hydrolysed laminaribiose to glucose. The remaining gentiobiose must be hydrolysed by other 1,6-β-glucosidases. Therefore, the endo-1,3-β-glucanase, exo-1,3-β-glucanase and 1,3-β-glucosidase may act synergistically to completely degrade the 1,3-β-glucan backbone of the cell wall during fruiting body autolysis. These three 1,3-β-glucoside hydrolases share a similar optimum pH and optimum temperature, supporting the speculation that these enzymes work together under the same conditions to degrade 1,3-β-glucan in the cell wall during fruiting body autolysis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000143
2015-10-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/10/1978.html?itemId=/content/journal/micro/10.1099/mic.0.000143&mimeType=html&fmt=ahah

References

  1. Bhatia Y., Mishra S., Bisaria V.S.. 2002; Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol22:375–407 [CrossRef][PubMed]
    [Google Scholar]
  2. Bowman S.M., Free S.J.. 2006; The structure and synthesis of the fungal cell wall. BioEssays28:799–808 [CrossRef][PubMed]
    [Google Scholar]
  3. Bradford M.M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  4. Bush D.A.. 1974; Autolysis of Coprinus comatus sporophores. Experientia30:984–985 [CrossRef][PubMed]
    [Google Scholar]
  5. Cabib E., Arroyo J.. 2013; How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol11:648–655 [CrossRef][PubMed]
    [Google Scholar]
  6. Choi H.T., Cho C.W.. 2005; Ultrastructural studies on the autolysis of Coprinellus congregatus. Kor J Microbiol41:312–315
    [Google Scholar]
  7. Fang H., Zhang W., Niu X., Liu Z., Lu C., Wei H., Yuan S.. 2014; Stipe wall extension of Flammulina velutipes could be induced by an expansin-like protein from Helix aspersa. Fungal Biol118:1–11 [CrossRef][PubMed]
    [Google Scholar]
  8. Fukuda K., Hiraga M., Asakuma S., Arai I., Sekikawa M., Urashima T.. 2008; Purification and characterization of a novel exo-β-1,3-1,6-glucanase from the fruiting body of the edible mushroom Enoki (Flammulina velutipes). Biosci Biotechnol Biochem72:3107–3113 [CrossRef][PubMed]
    [Google Scholar]
  9. Gastebois A., Clavaud C., Aimanianda V., Latgé J.P.. 2009; Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization. Future Microbiol4:583–595 [CrossRef][PubMed]
    [Google Scholar]
  10. Goldstein I., Hay G., Lewis B.A., Smith F.. 1965; Controlled degradation of polysaccharides by periodate oxidation, reduction, and hydrolysis. Methods in Carbohydr Chem5:361–369
    [Google Scholar]
  11. Goñi O., Sanchez-Ballesta M.T., Merodio C., Escribano M.I.. 2011; A cryoprotective and cold-adapted 1,3-β-endoglucanase from cherimoya (Annona cherimola) fruit. Phytochemistry72:844–854 [CrossRef][PubMed]
    [Google Scholar]
  12. Ishida T., Fushinobu S., Kawai R., Kitaoka M., Igarashi K., Samejima M.. 2009; Crystal structure of glycoside hydrolase family 55 β-1,3-glucanase from the basidiomycete Phanerochaete chrysosporium. J Biol Chem284:10100–10109 [CrossRef][PubMed]
    [Google Scholar]
  13. Iten W., Matile P.. 1970; Role of chitinase and other lysosomal enzymes of Coprinus zagopus in the autolysis of fruiting bodies. J Gen Microbiol61:301–309 [CrossRef]
    [Google Scholar]
  14. Kamada T., Takemaru T.. 1983; Modifications of cell-wall polysaccharides during stipe elongation in the basidiomycete Coprinus cinereus. J Gen Microbiol129:703–709
    [Google Scholar]
  15. Kamada T., Fujii T., Nakagawa T., Takemaru T.. 1985; Changes in (1 → 3)-β-glucanase activities during stipe elongation in Coprinus cinereus. Curr Microbiol12:257–260 [CrossRef]
    [Google Scholar]
  16. Kamada T., Takemaru T., Prosser J.I., Gooday G.W.. 1991; Right and left handed helicity of chitin microfibrils in stipe cells in Coprinus cinereus. Protoplasma165:64–70 [CrossRef]
    [Google Scholar]
  17. Kües U.. 2000; Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev64:316–353 [CrossRef][PubMed]
    [Google Scholar]
  18. Kumagai Y., Satoh T., Inoue A., Ojima T.. 2014; A laminaribiose-hydrolyzing enzyme, AkLab, from the common sea hare Aplysia kurodai and its transglycosylation activity. Comp Biochem Physiol B Biochem Mol Biol167:1–7 [CrossRef][PubMed]
    [Google Scholar]
  19. Laemmli U.K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  20. Lim H., Choi H.T.. 2009; Enhanced expression of chitinase during the autolysis of mushroom in Coprinellus congregatus. J Microbiol47:225–228 [CrossRef][PubMed]
    [Google Scholar]
  21. Martin K., McDougall B.M., McIlroy S., Chen J., Seviour R.J.. 2007; Biochemistry and molecular biology of exocellular fungal β-(1,3)- and β-(1,6)-glucanases. FEMS Microbiol Rev31:168–192 [CrossRef][PubMed]
    [Google Scholar]
  22. Miller G.L.. 1959; Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem31:426–428 [CrossRef]
    [Google Scholar]
  23. Minato K., Kawakami S., Nomura K., Tsuchida H., Mizuno M.. 2004; An exo β-1,3 glucanase synthesized de novo dgrades lentinan during storage of Lentinula edodes and diminishes immunomodulationg activity of the mushroom. Carbohydr Polym56:279–286 [CrossRef]
    [Google Scholar]
  24. Moura-Tamames S.A., Ramos M.J., Fernandes P.A.. 2009; Modelling β-1,3-exoglucanase-saccharide interactions: structure of the enzyme-substrate complex and enzyme binding to the cell wall. J Mol Graph Model27:908–920 [CrossRef][PubMed]
    [Google Scholar]
  25. Mouyna I., Hartl L., Latgé J.P.. 2013; β-1,3-glucan modifying enzymes in Aspergillus fumigatus. Front Microbiol4:81 [CrossRef][PubMed]
    [Google Scholar]
  26. Muraguchi H., Fujita T., Kishibe Y., Konno K., Ueda N., Nakahori K., Yanagi S.O., Kamada T.. 2008; The exp1 gene essential for pileus expansion and autolysis of the inky cap mushroom Coprinopsis cinerea (Coprinus cinereus) encodes an HMG protein. Fungal Genet Biol45:890–896 [CrossRef][PubMed]
    [Google Scholar]
  27. Nelson T.E.. 1975; The attack mechanism of an exo-1,3-β-glucosidase from Basidiomycete sp. QM 806. Biochim Biophys Acta377:139–145 [CrossRef][PubMed]
    [Google Scholar]
  28. Pitson S.M., Seviour R.J., McDougall B.M.. 1993; Noncellulolytic fungal beta-glucanases: their physiology and regulation. Enzyme Microb Technol15:178–192 [CrossRef][PubMed]
    [Google Scholar]
  29. Pukkila P.J.. 2011; Coprinopsis cinerea. Curr Biol21:R616–R617 [CrossRef][PubMed]
    [Google Scholar]
  30. Read S.M., Currie G., Bacic A.. 1996; Analysis of the structural heterogeneity of laminarin by electrospray-ionisation-mass spectrometry. Carbohydr Res281:187–201 [CrossRef][PubMed]
    [Google Scholar]
  31. Saha B.C., Bothast R.J.. 1996; Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata. Appl Environ Microbiol62:3165–3170[PubMed]
    [Google Scholar]
  32. Sakamoto Y., Irie T., Sato T.. 2005a; Isolation and characterization of a fruiting body-specific exo-β-1,3-glucanase-encoding gene, exg1, from Lentinula edodes. Curr Genet47:244–252 [CrossRef][PubMed]
    [Google Scholar]
  33. Sakamoto Y., Minato K., Nagai M., Mizuno M., Sato T.. 2005b; Characterization of the Lentinula edodes exg2 gene encoding a lentinan-degrading exo-β-1,3-glucanase. Curr Genet48:195–203 [CrossRef][PubMed]
    [Google Scholar]
  34. Sakamoto Y., Watanabe H., Nagai M., Nakade K., Takahashi M., Sato T.. 2006; Lentinula edodes tlg1 encodes a thaumatin-like protein that is involved in lentinan degradation and fruiting body senescence. Plant Physiol141:793–801 [CrossRef][PubMed]
    [Google Scholar]
  35. Sakamoto Y., Nakade K., Konno N.. 2011; Endo-β-1,3-glucanase GLU1, from the fruiting body of Lentinula edodes, belongs to a new glycoside hydrolase family. Appl Environ Microbiol77:8350–8354 [CrossRef][PubMed]
    [Google Scholar]
  36. Sakamoto Y., Nakade K., Konno N., Sato T.. 2012; Senescence of the Lentinula edodes fruiting body after harvesting. In Food Quality pp.83–110 Edited by Kapiris K.. Rijeka; InTech Press:
    [Google Scholar]
  37. Stajich J.E., Wilke S.K., Ahrén D., Au C.H., Birren B.W., Borodovsky M., Burns C., Canbäck B., Casselton L.A., other authors. 2010; Insights into evolution of multicellular fungi from the assembled chromosomes of the mushroom Coprinopsis cinerea (Coprinus cinereus). Proc Natl Acad Sci U S A107:11889–11894 [CrossRef][PubMed]
    [Google Scholar]
  38. Tao Y., Xie B., Yang Z., Chen Z., Chen B., Deng Y., Jiang Y., van Peer A.F.. 2013; Identification and expression analysis of a new glycoside hydrolase family 55 exo-β-1,3-glucanase-encoding gene in Volvariella volvacea suggests a role in fruiting body development. Gene527:154–160 [CrossRef][PubMed]
    [Google Scholar]
  39. Yamamoto R., Nevins D.J.. 1983; Degradation of a glucan containing β-(1 → 3) and β-(1 → 6) linkages by exo-(1 → 3)-β-d-glucanase. Carbohydr Res122:217–226 [CrossRef]
    [Google Scholar]
  40. Zhang W., Wu X., Zhou Y., Liu Z., Zhang W., Niu X., Zhao Y., Pei S., Zhao Y., Yuan S.. 2014; Characterization of stipe elongation of the mushroom Coprinopsis cinerea. Microbiology160:1893–1902 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000143
Loading
/content/journal/micro/10.1099/mic.0.000143
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error