1887

Abstract

The NsrR protein of is a transcriptional repressor that contains an [Fe–S] cluster that is the binding site for nitric oxide (NO). Reaction of NsrR with NO leads to de-repression of its target genes, which include those encoding an NO scavenging flavohaemoglobin and the RIC (repair of iron centres) protein involved in the repair of NO-damaged [Fe–S] clusters. The gene is promoter proximal in a transcription unit with , encoding the cold shock-inducible RNase R. Here, we show that is expressed from a strong promoter, but that its translation is extremely inefficient, leading to a low cellular NsrR concentration. Conversion of the start codon from the wild-type GUG to AUG increased the efficiency of translation (which, nevertheless, remained extremely low) and had measurable effects on the expression of some NsrR-regulated genes. We conclude that NsrR abundance in the cell is such that promoters with low-affinity NsrR binding sites may partially escape NsrR-mediated repression. Expression profiling confirmed that genes regulated by NsrR (whether directly or indirectly) tend to express lower mRNA levels when the start codon is AUG than when it is GUG. Transcriptomics data implicated the pyruvate oxidase gene as a novel NsrR target, which we confirmed and showed to be due to read-through transcription from the upstream - genes. We also present evidence to suggest that NsrR is a regulator of the genes, which encode the components of an [Fe–S] cluster biogenesis and repair system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000151
2015-10-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/10/2029.html?itemId=/content/journal/micro/10.1099/mic.0.000151&mimeType=html&fmt=ahah

References

  1. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K.A., Tomita M., Wanner B.L., Mori H.. 2006; Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol2:20060008 [CrossRef][PubMed]
    [Google Scholar]
  2. Bodenmiller D.M., Spiro S.. 2006; The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J Bacteriol188:874–881 [CrossRef][PubMed]
    [Google Scholar]
  3. Branchu P., Matrat S., Vareille M., Garrivier A., Durand A., Crépin S., Harel J., Jubelin G., Gobert A.P.. 2014; NsrR, GadE, and GadX interplay in repressing expression of the Escherichia coli O157 : H7 LEE pathogenicity island in response to nitric oxide. PLoS Pathog10:e1003874 [CrossRef][PubMed]
    [Google Scholar]
  4. Brandes N., Rinck A., Leichert L.I., Jakob U.. 2007; Nitrosative stress treatment of E. coli targets distinct set of thiol-containing proteins. Mol Microbiol66:901–914 [CrossRef][PubMed]
    [Google Scholar]
  5. Cairrão F., Cruz A., Mori H., Arraiano C.M.. 2003; Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA. Mol Microbiol50:1349–1360 [CrossRef][PubMed]
    [Google Scholar]
  6. Chang Y.Y., Cronan J.E. Jr. 1982; Mapping nonselectable genes of Escherichia coli by using transposon Tn10: location of a gene affecting pyruvate oxidase. J Bacteriol151:1279–1289[PubMed]
    [Google Scholar]
  7. Chang Y.Y., Wang A.Y., Cronan J.E. Jr. 1994; Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS (katF) gene. Mol Microbiol11:1019–1028 [CrossRef][PubMed]
    [Google Scholar]
  8. Chen Y.-J., Liu P., Nielsen A.A., Brophy J.A., Clancy K., Peterson T., Voigt C.A.. 2013; Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods10:659–664 [CrossRef][PubMed]
    [Google Scholar]
  9. Chismon D.L., Browning D.F., Farrant G.K., Busby S.J.. 2010; Unusual organization, complexity and redundancy at the Escherichia coli hcp-hcr operon promoter. Biochem J430:61–68 [CrossRef][PubMed]
    [Google Scholar]
  10. Conway T., Creecy J.P., Maddox S.M., Grissom J.E., Conkle T.L., Shadid T.M., Teramoto J., San Miguel P., Shimada T., other authors. 2014; Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing. MBio5:e01442–e01414 [CrossRef][PubMed]
    [Google Scholar]
  11. Corker H., Poole R.K.. 2003; Nitric oxide formation by Escherichia coli. Dependence on nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp. J Biol Chem278:31584–31592 [CrossRef][PubMed]
    [Google Scholar]
  12. Crack J.C., Munnoch J., Dodd E.L., Knowles F., Al Bassam M.M., Kamali S., Holland A.A., Cramer S.P., Hamilton C.J., other authors. 2015; NsrR from Streptomyces coelicolor is a nitric oxide-sensing [4Fe-4S] cluster protein with a specialized regulatory function. J Biol Chem290:12689–12704 [CrossRef][PubMed]
    [Google Scholar]
  13. Crane B.R., Sudhamsu J., Patel B.A.. 2010; Bacterial nitric oxide synthases. Annu Rev Biochem79:445–470 [CrossRef][PubMed]
    [Google Scholar]
  14. D'Autréaux B., Touati D., Bersch B., Latour J.-M., Michaud-Soret I.. 2002; Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proc Natl Acad Sci U S A99:16619–16624 [CrossRef][PubMed]
    [Google Scholar]
  15. Datsenko K.A., Wanner B.L.. 2000; One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A97:6640–6645 [CrossRef][PubMed]
    [Google Scholar]
  16. Fang F.C.. 2004; Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol2:820–832 [CrossRef][PubMed]
    [Google Scholar]
  17. Filenko N.A., Browning D.F., Cole J.A.. 2005; Transcriptional regulation of a hybrid cluster (prismane) protein. Biochem Soc Trans33:195–197 [CrossRef][PubMed]
    [Google Scholar]
  18. Filenko N., Spiro S., Browning D.F., Squire D., Overton T.W., Cole J., Constantinidou C.. 2007; The NsrR regulon of Escherichia coli K-12 includes genes encoding the hybrid cluster protein and the periplasmic, respiratory nitrite reductase. J Bacteriol189:4410–4417 [CrossRef][PubMed]
    [Google Scholar]
  19. Gardner A.M., Gessner C.R., Gardner P.R.. 2003; Regulation of the nitric oxide reduction operon (norRVW) in Escherichia coli. Role of NorR and σ54 in the nitric oxide stress response. J Biol Chem278:10081–10086 [CrossRef][PubMed]
    [Google Scholar]
  20. Giel J.L., Rodionov D., Liu M., Blattner F.R., Kiley P.J.. 2006; IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli. Mol Microbiol60:1058–1075 [CrossRef][PubMed]
    [Google Scholar]
  21. Gomes C.M., Giuffrè A., Forte E., Vicente J.B., Saraiva L.M., Brunori M., Teixeira M.. 2002; A novel type of nitric-oxide reductase, Escherichia coli flavorubredoxin. J Biol Chem277:25273–25276 [CrossRef][PubMed]
    [Google Scholar]
  22. Hager L.P.. 1957; Trypsin activation of a ferricyanide-linked pyruvic acid oxidation. J Biol Chem229:251–263[PubMed]
    [Google Scholar]
  23. Husseiny M.I., Hensel M.. 2005; Rapid method for the construction of Salmonella enterica serovar Typhimurium vaccine carrier strains. Infect Immun73:1598–1605 [CrossRef][PubMed]
    [Google Scholar]
  24. Hutchings M.I., Mandhana N., Spiro S.. 2002; The NorR protein of Escherichia coli activates expression of the flavorubredoxin gene norV in response to reactive nitrogen species. J Bacteriol184:4640–4643 [CrossRef][PubMed]
    [Google Scholar]
  25. Hyduke D.R., Jarboe L.R., Tran L.M., Chou K.J., Liao J.C.. 2007; Integrated network analysis identifies nitric oxide response networks and dihydroxyacid dehydratase as a crucial target in Escherichia coli. Proc Natl Acad Sci U S A104:8484–8489 [CrossRef][PubMed]
    [Google Scholar]
  26. Ishihama A., Kori A., Koshio E., Yamada K., Maeda H., Shimada T., Makinoshima H., Iwata A., Fujita N.. 2014; Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli. J Bacteriol196:2718–2727 [CrossRef][PubMed]
    [Google Scholar]
  27. Justino M.C., Vicente J.B., Teixeira M., Saraiva L.M.. 2005; New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J Biol Chem280:2636–2643 [CrossRef][PubMed]
    [Google Scholar]
  28. Justino M.C., Baptista J.M., Saraiva L.M.. 2009; Di-iron proteins of the Ric family are involved in iron-sulfur cluster repair. Biometals22:99–108 [CrossRef][PubMed]
    [Google Scholar]
  29. Khudyakov Yu.E., Neplyueva V.S., Kalinina T.I., Smirnov V.D.. 1988; Effect of structure of the initiator codon on translation in E. coli. FEBS Lett232:369–371 [CrossRef][PubMed]
    [Google Scholar]
  30. Langley D., Guest J.R.. 1977; Biochemical genetics of the α-keto acid dehydrogenase complexes of Escherichia coli K12: isolation and biochemical properties of deletion mutants. J Gen Microbiol99:263–276 [CrossRef][PubMed]
    [Google Scholar]
  31. Lee J.-H., Yeo W.-S., Roe J.-H.. 2003; Regulation of the sufABCDSE operon by Fur. J Microbiol41:109–114
    [Google Scholar]
  32. Lee J.-H., Yeo W.-S., Roe J.-H.. 2004; Induction of the sufA operon encoding Fe-S assembly proteins by superoxide generators and hydrogen peroxide: involvement of OxyR, IHF and an unidentified oxidant-responsive factor. Mol Microbiol51:1745–1755 [CrossRef][PubMed]
    [Google Scholar]
  33. Lee K.-C., Yeo W.-S., Roe J.-H.. 2008; Oxidant-responsive induction of the suf operon, encoding a Fe-S assembly system, through Fur and IscR in Escherichia coli. J Bacteriol190:8244–8247 [CrossRef][PubMed]
    [Google Scholar]
  34. Lin H.-Y., Bledsoe P.J., Stewart V.. 2007; Activation of yeaR-yoaG operon transcription by the nitrate-responsive regulator NarL is independent of oxygen-responsive regulator Fnr in Escherichia coli K-12. J Bacteriol189:7539–7548 [CrossRef][PubMed]
    [Google Scholar]
  35. Miller J.H.. 1992; A Short Course in Bacterial Genetics NY: Cold Spring Harbor Laboratory Cold Spring Harbor;
    [Google Scholar]
  36. O'Donnell S.M., Janssen G.R.. 2001; The initiation codon affects ribosome binding and translational efficiency in Escherichia coli of cI mRNA with or without the 5′ untranslated leader. J Bacteriol183:1277–1283 [CrossRef][PubMed]
    [Google Scholar]
  37. Outten F.W., Djaman O., Storz G.. 2004; suf operon requirement for Fe-S cluster assembly during iron starvation in Escherichia coli. Mol Microbiol52:861–872 [CrossRef][PubMed]
    [Google Scholar]
  38. Partridge J.D., Bodenmiller D.M., Humphrys M.S., Spiro S.. 2009; NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility. Mol Microbiol73:680–694 [CrossRef][PubMed]
    [Google Scholar]
  39. Pullan S.T., Gidley M.D., Jones R.A., Barrett J., Stevanin T.M., Read R.C., Green J., Poole R.K.. 2007; Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation. J Bacteriol189:1845–1855 [CrossRef][PubMed]
    [Google Scholar]
  40. Rankin L.D., Bodenmiller D.M., Partridge J.D., Nishino S.F., Spain J.C., Spiro S.. 2008; Escherichia coli NsrR regulates a pathway for the oxidation of 3-nitrotyramine to 4-hydroxy-3-nitrophenylacetate. J Bacteriol190:6170–6177 [CrossRef][PubMed]
    [Google Scholar]
  41. Reddy P., Peterkofsky A., McKenney K.. 1985; Translational efficiency of the Escherichia coli adenylate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proc Natl Acad Sci U S A82:5656–5660 [CrossRef][PubMed]
    [Google Scholar]
  42. Ren B., Zhang N., Yang J., Ding H.. 2008; Nitric oxide-induced bacteriostasis and modification of iron-sulphur proteins in Escherichia coli. Mol Microbiol70:953–964[PubMed]
    [Google Scholar]
  43. Rhodius V.A., Suh W.C., Nonaka G., West J., Gross C.A.. 2006; Conserved and variable functions of the σE stress response in related genomes. PLoS Biol4:e2 [CrossRef][PubMed]
    [Google Scholar]
  44. Richardson A.R., Payne E.C., Younger N., Karlinsey J.E., Thomas V.C., Becker L.A., Navarre W.W., Castor M.E., Libby S.J., Fang F.C.. 2011; Multiple targets of nitric oxide in the tricarboxylic acid cycle of Salmonella enterica serovar Typhimurium. Cell Host Microbe10:33–43 [CrossRef][PubMed]
    [Google Scholar]
  45. Simons R.W., Houman F., Kleckner N.. 1987; Improved single and multicopy lac-based cloning vectors for protein and operon fusions. Gene53:85–96 [CrossRef][PubMed]
    [Google Scholar]
  46. Spiro S.. 2007; Regulators of bacterial responses to nitric oxide. FEMS Microbiol Rev31:193–211 [CrossRef][PubMed]
    [Google Scholar]
  47. Stenström C.M., Holmgren E., Isaksson L.A.. 2001; Cooperative effects by the initiation codon and its flanking regions on translation initiation. Gene273:259–265 [CrossRef][PubMed]
    [Google Scholar]
  48. Tucker N.P., Hicks M.G., Clarke T.A., Crack J.C., Chandra G., Le Brun N.E., Dixon R., Hutchings M.I.. 2008; The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster. PLoS One3:e3623 [CrossRef][PubMed]
    [Google Scholar]
  49. van den Berg W.A.M., Hagen W.R., van Dongen W.M.A.M.. 2000; The hybrid-cluster protein (‘prismane protein’) from Escherichia coli. Characterization of the hybrid-cluster protein, redox properties of the [2Fe-2S] and [4Fe-2S-2O] clusters and identification of an associated NADH oxidoreductase containing FAD and [2Fe-2S]. Eur J Biochem267:666–676 [CrossRef][PubMed]
    [Google Scholar]
  50. Vey J.L., Yang J., Li M., Broderick W.E., Broderick J.B., Drennan C.L.. 2008; Structural basis for glycyl radical formation by pyruvate formate-lyase activating enzyme. Proc Natl Acad Sci U S A105:16137–16141 [CrossRef][PubMed]
    [Google Scholar]
  51. Yamamoto K., Watanabe H., Ishihama A.. 2014; Expression levels of transcription factors in Escherichia coli: growth phase- and growth condition-dependent variation of 90 regulators from six families. Microbiology160:1903–1913 [CrossRef][PubMed]
    [Google Scholar]
  52. Yamamoto N., Nakahigashi K., Nakamichi T., Yoshino M., Takai Y., Touda Y., Furubayashi A., Kinjyo S., Dose H., other authors. 2009; Update on the Keio collection of Escherichia coli single-gene deletion mutants. Mol Syst Biol5:335 [CrossRef][PubMed]
    [Google Scholar]
  53. Yeo W.S., Lee J.H., Lee K.C., Roe J.H.. 2006; IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe-S assembly proteins. Mol Microbiol61:206–218 [CrossRef][PubMed]
    [Google Scholar]
  54. Yukl E.T., Elbaz M.A., Nakano M.M., Moënne-Loccoz P.. 2008; Transcription factor NsrR from Bacillus subtilis senses nitric oxide with a 4Fe-4S cluster. Biochemistry47:13084–13092 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000151
Loading
/content/journal/micro/10.1099/mic.0.000151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error