-
Volume 155,
Issue 7,
2009
Volume 155, Issue 7, 2009
- Microbiology Comment
-
- Cell And Molecular Biology Of Microbes
-
-
-
Comparative proteomic analysis of an Aspergillus fumigatus mutant deficient in glucosidase I (AfCwh41)
More Lessα-Glucosidase I regulates trimming of the terminal α-1,2-glucose residue in the N-glycan processing pathway, which plays an important role in quality control systems in mammalian cells. Previously, we identified the gene encoding α-glucosidase I in the opportunistic human fungal pathogen Aspergillus fumigatus, namely Afcwh41. Deletion of the Afcwh41 gene results in a severe reduction of conidia formation, a temperature-sensitive deficiency of cell wall integrity, and abnormalities of polar growth and septation. An upregulation of the genes encoding Rho-type GTPases was also observed, which suggests activation of the cell wall integrity pathway in the mutant. Using 2D gel analysis, we revealed that the proteins involved in protein assembly, ubiquitin-mediated degradation and actin organization are altered in the ΔAfcwh41 mutant. Evidence was obtained for a defect in the polarized localization of the actin cytoskeleton in the mutant. Our results suggest that blocking of the glucose trimming in A. fumigatus might induce accumulation of misfolded proteins in the endoplasmic reticulum; these misfolded proteins are probably required for cell wall synthesis and thus activate the cell wall integrity pathway, which then causes the abnormal polarity associated with the ΔAfcwh41 mutant.
-
-
-
-
DNA microarray analysis of global gene regulation by A-factor in Streptomyces griseus
More LessA-factor (2-isocapryloyl-3R-hydroxymethyl-γ-butyrolactone) is a microbial hormone that triggers morphological differentiation and secondary metabolism in Streptomyces griseus. The effects of A-factor on global gene expression were determined by DNA microarray analysis of transcriptomes obtained with the A-factor-deficient mutant ΔafsA. A-factor was added at a concentration of 25 ng ml−1 to mutant ΔafsA at the middle of the exponential growth phase, and RNA samples were prepared from the cells grown after A-factor addition for a further 5, 15 and 30 min, and 1, 2, 4, 8 and 12 h. The effects of A-factor on transcription of all protein-coding genes of S. griseus were evaluated by comparison of the transcriptomes with those obtained from cells grown in the absence of A-factor. Analysis of variance among the transcriptomes revealed that 477 genes, which were dispersed throughout the chromosome, were differentially expressed during the 12 h after addition of A-factor, when evaluated by specific criteria. Quality threshold clustering analysis with regard to putative polycistronic transcriptional units and levels of upregulation predicted that 152 genes belonging to 74 transcriptional units were probable A-factor-inducible genes. Competitive electrophoretic mobility shift assays using DNA fragments including putative promoter regions of these 74 transcriptional units suggested that AdpA bound 37 regions to activate 72 genes in total. Many of these A-factor-inducible genes encoded proteins of unknown function, suggesting that the A-factor regulatory cascade of S. griseus affects gene expression at a specific time point more profoundly than expected.
-
-
-
Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC
More LessPneumococci that have developed the competent state kill and lyse non-competent sister cells and members of closely related species during co-cultivation in vitro. The key component in this process, called fratricide, is the product of the late competence gene cbpD. In addition, the peptidoglycan hydrolases LytA and LytC are required for efficient lysis of target cells. Here, we have investigated the relative contribution and possible role of each of the proteins mentioned above. Previous studies have shown that CbpD is produced exclusively by competent cells, whereas LytA and LytC can be provided by the competent attackers as well as the non-competent target cells. By using an improved assay to compare the effect of cis- versus trans-acting LytA and LytC, we were able to show that target cells are lysed much more efficiently when LytA and LytC are provided in cis, i.e. by the target cells themselves. Western analysis demonstrated that considerable amounts of LytC are present in the growth medium. In contrast, we were not able to detect any extracellular LytA. This finding indicates that LytA- and LytC-mediated fratricide represent different processes. In the absence of LytA and LytC, only a tiny fraction of the target cells were lysed, demonstrating that CbpD does not function efficiently on its own. However, in the presence of 1 mM EDTA, the fraction of target cells lysed directly by CbpD increased dramatically, indicating that divalent cations are involved in the regulation of fratricide under natural conditions.
-
-
-
Function of the N-terminal region of the phosphate-sensing histidine kinase, SphS, in Synechocystis sp. PCC 6803
More LessIn Synechocystis sp. PCC 6803 the histidine kinase SphS (sll0337) is involved in transcriptional activation of the phosphate (Pi)-acquisition system which includes alkaline phosphatase (AP). The N-terminal region of SphS contains both a hydrophobic region and a Per-Arnt-Sim (PAS) domain. The C-terminal region has a highly conserved transmitter domain. Immunological localization studies on heterologously expressed SphS in Escherichia coli indicate that the hydrophobic region is important for membrane localization. In order to evaluate the function of the N-terminal region of SphS, deletion mutants under the control of the native promoter were analysed for in vivo AP activity. Deletion of the N-terminal hydrophobic region resulted in loss of AP activity under both Pi-deficient and Pi-sufficient conditions. Substitution of the hydrophobic region of SphS with that from the Ni2+-sensing histidine kinase, NrsS, resulted in the same induction characteristics as SphS. Deletion of the PAS domain resulted in the constitutive induction of AP activity regardless of Pi availability. To characterize the PAS domain in more in detail, four amino acid residues conserved in the PAS domain were substituted with Ala. Among the mutants R121A constitutively expressed AP activity, suggesting that R121 is important for the function of the PAS domain. Our observations indicated that the presence of a transmembrane helix in the N-terminal region of SphS is critical for activity and that the PAS domain is involved in perception of Pi availability.
-
-
-
Role of Vfr in regulating exotoxin A production by Pseudomonas aeruginosa
More LessPseudomonas aeruginosa exotoxin A (ETA) production depends on the virulence-factor regulator Vfr. Recent evidence indicates that the P. aeruginosa iron-starvation sigma factor PvdS also enhances ETA production through the ETA-regulatory gene regA. Mutants defective in vfr, regA and pvdS, plasmids that overexpress these genes individually and lacZ transcriptional/translational fusion plasmids were utilized to examine the relationship between vfr, regA and pvdS in regulating P. aeruginosa ETA production. ETA concentration and regA expression were reduced significantly in PAOΔvfr, but pvdS expression was not affected. Overexpression of Vfr produced a limited increase in ETA production in PAOΔpvdS, but not PAOΔregA. Additionally, overexpression of either RegA or PvdS did not enhance ETA production in PAOΔvfr. RT-PCR analysis showed that iron did not affect the accumulation of vfr mRNA in PAO1. These results suggest that: (i) Vfr enhances toxA expression in PAO1 both directly and indirectly through regA, but not through pvdS; (ii) vfr expression is not regulated by iron; and (iii) both Vfr and PvdS cooperate in the presence of RegA to achieve a maximum level of toxA expression.
-
-
-
Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis
Numerous strategies allowing bacteria to detect and respond to oxidative conditions depend on the cell redox state. Here we examined the ability of Lactococcus lactis to survive aerobically in the presence of the reducing agent dithiothreitol (DTT), which would be expected to modify the cell redox state and disable the oxidative stress response. DTT inhibited L. lactis growth at 37 °C in aerobic conditions, but not in anaerobiosis. Mutants selected as DTT resistant all mapped to the pstFEDCBA locus, encoding a high-affinity phosphate transporter. Transcription of pstFEDCBA and a downstream putative regulator of stress response, phoU, was deregulated in a pstA strain, but amounts of major oxidative stress proteins were unchanged. As metals participate in oxygen radical formation, we compared metal sensitivity of wild-type and pstA strains. The pstA mutant showed approximately 100-fold increased resistance to copper and zinc. Furthermore, copper or zinc addition exacerbated the sensitivity of a wild-type L. lactis strain to DTT. Inactivation of pstA conferred a more general resistance to oxidative stress, alleviating the oxygen- and thermo-sensitivity of a clpP mutant. This study establishes a role for the pst locus in metal homeostasis, suggesting that pst inactivation lowers intracellular reactivity of copper and zinc, which would limit bacterial sensitivity to oxygen.
-
-
-
SwrAA activates poly-γ-glutamate synthesis in addition to swarming in Bacillus subtilis
More LessPoly-γ-glutamic acid (γ-PGA) is an extracellular polymer produced by various strains of Bacillus. Ιt was first described as the component of the capsule in Bacillus anthracis, where it plays a relevant role in virulence. γ-PGA is also a distinctive component of ‘natto’, a traditional Japanese food consisting of soybean fermented by Bacillus subtilis (natto). Domesticated B. subtilis strains do not synthesize γ-PGA although they possess the functional biosynthetic pgs operon. In the present work we explore the correlation between the genetic determinants, swrAA and degU, which allow a derivative of the domestic strain JH642 to display a mucoid colony morphology on LB agar plates due to the production of γ-PGA. Full activation of the pgs operon requires the co-presence of SwrAA and the phosphorylated form of DegU (DegU∼P). The presence of either DegU∼P or SwrAA alone has only marginal effects on pgs operon transcription and γ-PGA production. Although SwrAA was identified as necessary for swarming and full swimming motility together with DegU, we show that motility is not involved in γ-PGA production. Activation of γ-PGA synthesis is therefore a motility-independent phenotype in which SwrAA and DegU∼P display a cooperative effect.
-
-
-
A two-component system is required for colonization of host cells by meningococcus
More LessIn order to adapt to changing environments, bacteria have evolved two-component systems (TCSs) that are able to sense and respond to environmental stimuli. The signal perception relies on a sensor protein whose activation allows rapid adaptation through transcriptional regulation achieved by the regulatory protein. The ability to adhere to and grow on the surface of human host cells is an absolute requirement for many pathogens, including Neisseria meningitidis, in order to colonize new hosts and to disseminate inside their host. Among the four TCSs encoded in the meningococcus genome, only the PhoQ (MisS)/PhoP (MisR) system has been shown to constitute a functional signal transduction circuit. To investigate the involvement of this TCS in the adaptation process requisite for host cell colonization, we have tested the ability to grow on host cells of a mutant inactivated for the sensor of the TCS. Our results demonstrate the involvement of the TCS in the adaptation of the meningococcus to growth on host cells. We show that the expression of the PhoQ (MisS)/PhoP (MisR) TCS is cell-contact controlled. Furthermore, this TCS controls the regulation of a group of genes, the REP2 regulon, previously shown to be cell-contact regulated and to encode functions crucial for the adaptation of the bacterium to host cell colonization. Thus, we provide evidence that one of the four TCSs existing in N. meningitidis contributes to the adaptation of the pathogen to growth on host cells.
-
-
-
The extracellular metalloprotease of Vibrio tubiashii directly inhibits its extracellular haemolysin
More LessVibrio tubiashii is a re-emerging pathogen of molluscs that secretes a variety of extracellular products (ECPs), including a metalloprotease and a cytolysin/haemolysin. Previously, we reported that the V. tubiashii haemolysin locus consists of two ORFs (vthB and vthA), similar to that of the homologous haemolysin genes (vvhB and vvhA) found in Vibrio vulnificus. Here, we demonstrate that the concomitant expression of both V. tubiashii genes resulted in significantly higher haemolytic activity than the vthA gene alone. In addition, we created a VthAB− mutant strain of V. tubiashii that was virtually devoid of haemolytic activity in liquid media. Interestingly, significant production of an additional haemolysin(s) was observed on blood plates. Moreover, we have previously reported that in V. tubiashii, proteolytic and haemolytic activities are inversely produced during bacterial growth. Here, we study this correlation in more detail and present evidence that the VtpA metalloprotease inhibits haemolytic activity in culture supernatants, based on the following evidence: (i) loss of metalloprotease activity by either mutation or EDTA inhibition resulted in increased haemolytic activity; (ii) overexpression of the vtpA gene resulted in decreased haemolytic activity; (iii) purified VtpA metalloprotease directly diminished haemolytic activity by purified VthA haemolysin. Importantly, we found not only that vthAB gene expression remained high throughout growth but also that there were no dramatic differences in vthAB gene expression between the parent and VtpA− mutant strains. Thus, our results strongly suggest that the V. tubiashii metalloprotease directly targets its haemolysin.
-
- Environmental And Evolutionary Microbiology
-
-
-
Actinomyces naeslundii in initial dental biofilm formation
More LessThe combined use of confocal laser scanning microscopy (CLSM) and fluorescent in situ hybridization (FISH) offers new opportunities for analysis of the spatial relationships and temporal changes of specific members of the microbiota of intact dental biofilms. The purpose of this study was to analyse the patterns of colonization and population dynamics of Actinomyces naeslundii compared to streptococci and other bacteria during the initial 48 h of biofilm formation in the oral cavity. Biofilms developed on standardized glass slabs mounted in intra-oral appliances worn by ten individuals for 6, 12, 24 and 48 h. The biofilms were subsequently labelled with probes against A. naeslundii (ACT476), streptococci (STR405) or all bacteria (EUB338), and were analysed by CLSM. Labelled bacteria were quantified by stereological tools. The results showed a notable increase in the number of streptococci and A. naeslundii over time, with a tendency towards a slower growth rate for A. naeslundii compared with streptococci. A. naeslundii was located mainly in the inner part of the multilayered biofilm, indicating that it is one of the species that attaches directly to the acquired pellicle. The participation of A. naeslundii in the initial stages of dental biofilm formation may have important ecological consequences.
-
-
-
-
Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics
To detect plasmid-borne antibiotic-resistance genes in wastewater treatment plant (WWTP) bacteria, 192 resistance-gene-specific PCR primer pairs were designed and synthesized. Subsequent PCR analyses on total plasmid DNA preparations obtained from bacteria of activated sludge or the WWTP's final effluents led to the identification of, respectively, 140 and 123 different resistance-gene-specific amplicons. The genes detected included aminoglycoside, β-lactam, chloramphenicol, fluoroquinolone, macrolide, rifampicin, tetracycline, trimethoprim and sulfonamide resistance genes as well as multidrug efflux and small multidrug resistance genes. Some of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and WWTP bacteria. Sequencing of selected resistance-gene-specific amplicons confirmed their identity or revealed that the amplicon nucleotide sequence is very similar to a gene closely related to the reference gene used for primer design. These results demonstrate that WWTP bacteria are a reservoir for various resistance genes. Moreover, detection of about 64 % of the 192 reference resistance genes in bacteria obtained from the WWTP's final effluents indicates that these resistance determinants might be further disseminated in habitats downstream of the sewage plant.
-
- Genes And Genomes
-
-
-
The DNA static curvature has a role in the regulation of the ompS1 porin gene in Salmonella enterica serovar Typhi
More LessThe DNA static curvature has been described to play a key role as a regulatory element in the transcription process of several bacterial genes. Here, the role of DNA curvature in the expression of the ompS1 porin gene in Salmonella enterica serovar Typhi is described. The web server mutacurve was used to predict mutations that diminished or restored the extent of DNA curvature in the 5′ regulatory region of ompS1. Using these predictions, curvature was diminished by site-directed mutagenesis of only two residues, and curvature was restored by further mutagenesis of the same two residues. Lowering the extent of DNA curvature resulted in an increase in ompS1 expression and in the diminution of the affinity of the silencer proteins H-NS and StpA for the ompS1 5′ regulatory region. These mutations were in a region shown not to contain the H-NS nucleation site, consistent with the notion that the effect on expression was due to changes in DNA structural topology.
-
-
-
-
Sequence variations in RepMP2/3 and RepMP4 elements reveal intragenomic homologous DNA recombination events in Mycoplasma pneumoniae
The gene encoding major adhesin protein P1 of Mycoplasma pneumoniae, MPN141, contains two DNA sequence stretches, designated RepMP2/3 and RepMP4, which display variation among strains. This variation allows strains to be differentiated into two major P1 genotypes (1 and 2) and several variants. Interestingly, multiple versions of the RepMP2/3 and RepMP4 elements exist at other sites within the bacterial genome. Because these versions are closely related in sequence, but not identical, it has been hypothesized that they have the capacity to recombine with their counterparts within MPN141, and thereby serve as a source of sequence variation of the P1 protein. In order to determine the variation within the RepMP2/3 and RepMP4 elements, both within the bacterial genome and among strains, we analysed the DNA sequences of all RepMP2/3 and RepMP4 elements within the genomes of 23 M. pneumoniae strains. Our data demonstrate that: (i) recombination is likely to have occurred between two RepMP2/3 elements in four of the strains, and (ii) all previously described P1 genotypes can be explained by inter-RepMP recombination events. Moreover, the difference between the two major P1 genotypes was reflected in all RepMP elements, such that subtype 1 and 2 strains can be differentiated on the basis of sequence variation in each RepMP element. This implies that subtype 1 and subtype 2 strains represent evolutionarily diverged strain lineages. Finally, a classification scheme is proposed in which the P1 genotype of M. pneumoniae isolates can be described in a sequence-based, universal fashion.
-
-
-
Extensive genomic diversity of closely related Wolbachia strains
Using microarray-based comparative genome hybridization (mCGH), the genomic content of Wolbachia pipientis wMel from Drosophila melanogaster was compared to the closely related Wolbachia from D. innubila (wInn), D. santomea (wSan), and three strains from D. simulans (wAu, wRi, wSim). A large number of auxiliary genes are identified in these five strains, with most absent/divergent genes being unique to a given strain. Each strain caused an average of ∼60 genes to be removed from the core genome. As such, these organisms do not appear to have the streamlined genomes expected of obligate intracellular bacteria. Prophage, hypothetical and ankyrin repeat genes are over-represented in the absent/divergent genes, with 21–87 % of absent/divergent genes coming from prophage regions. The only wMel region absent/divergent in all five query strains is that containing WD_0509 to WD_0511, including a DNA mismatch repair protein MutL-2, a degenerate RNase, and a conserved hypothetical protein. A region flanked by the two portions of the WO-B prophage in wMel is found in four of the five Wolbachia strains as well as on a plasmid of a rickettsial endosymbiont of Ixodes scapularis, suggesting lateral gene transfer between these two obligate intracellular species. Overall, these insect-associated Wolbachia have highly mosaic genomes, with lateral gene transfer playing an important role in their diversity and evolution.
-
-
-
Contribution of RecFOR machinery of homologous recombination to cell survival after loss of a restriction–modification gene complex
More LessLoss of a type II restriction–modification (RM) gene complex, such as EcoRI, from a bacterial cell leads to death of its descendent cells through attack by residual restriction enzymes on undermethylated target sites of newly synthesized chromosomes. Through such post-segregational host killing, these gene complexes impose their maintenance on their host cells. This finding led to the rediscovery of type II RM systems as selfish mobile elements. The host prokaryote cells were found to cope with such attacks through a variety of means. The RecBCD pathway of homologous recombination in Escherichia coli repairs the lethal lesions on the chromosome, whilst it destroys restricted non-self DNA. recBCD homologues, however, appear very limited in distribution among bacterial genomes, whereas homologues of the RecFOR proteins, responsible for another pathway, are widespread in eubacteria, just like the RM systems. In the present work, therefore, we examined the possible contribution of the RecFOR pathway to cell survival after loss of an RM gene complex. A recF mutation reduced survival in an otherwise rec-positive background and, more severely, in a recBC sbcBC background. We also found that its effect is prominent in the presence of specific non-null mutant forms of the RecBCD enzyme: the resistance to killing seen with recC1002, recC1004, recC2145 and recB2154 is severely reduced to the level of a null recBC allele when combined with a recF, recO or recR mutant allele. Such resistance was also dependent on RecJ and RecQ functions. UV resistance of these non-null recBCD mutants is also reduced by recF, recJ or recQ mutation. These results demonstrate that the RecFOR pathway of recombination can contribute greatly to resistance to RM-mediated host killing, depending on the genetic background.
-
-
-
Validation of partial rpoB gene sequence analysis for the identification of clinically important and emerging Acinetobacter species
More LessBacteria belonging to the genus Acinetobacter are ubiquitous in soil and water. Only a few species, including Acinetobacter baumannii, and the unnamed Acinetobacter genomic species (gen. sp.) 3 and 13TU, which together with the soil organism Acinetobacter calcoaceticus are combined in the A. calcoaceticus–A. baumannii (Acb) complex, have been recognized as important nosocomial infectious agents. The ecology, epidemiology and pathology of most species are not yet well established. Lack of practical and accurate methods limits routine identification of clinical isolates and thus hampers precise identification of those of the Acb complex and other Acinetobacter species of possible clinical significance. We previously identified a 350 bp highly variable zone on the rpoB gene which appeared to be a promising target for rapid molecular identification. In the present study, we validated this method for accuracy on a collection of reference strains belonging to A. calcoaceticus (5 strains), Acinetobacter gen. sp. 3 (29 strains), A. gen. sp. 13TU (18 strains), A. baumannii (30 strains) and one strain each of A. radioresistens, A. gen. sp. 15TU, A. gen. sp. 10, A. gen. sp. 11, A. gen. sp. ‘between 1 and 3’ and A. gen. sp. 14TU=13BJ. This represents the largest analysis to date that compares a large number of well-identified strains of the Acb complex to assess the intra- and interspecies variation within this complex. All were correctly identified with 98.9–100 % intraspecies relatedness based on partial rpoB sequence analysis. We then applied this tool to identify 99 Acinetobacter clinical isolates from four public hospitals in Marseille, France. All isolates could easily be identified to species as they were separated into 13 species sequence types with a sequence variance of 0–2.6 % from their respective type strains. Of these 99 isolates, 10 were A. haemolyticus, 52 were A. baumannii, 27 were A. gen. sp. 3, 5 were A. schindleri, 1 was A. lwoffii, and 1 was A. gen. sp. 13TU. Three were provisionally identified as A. gen. sp. 9. This is the first work to identify all specimens of a set of clinical Acinetobacter isolates at species level using rpoB sequence analysis. Our data emphasize the recognition of A. schindleri as an emerging cause of Acinetobacter-related infection and confirm that A. gen. sp. 3 is the second most commonly isolated Acinetobacter species after A. baumannii in patients.
-
-
-
Expression of the sarA family of genes in different strains of Staphylococcus aureus
More LessExpression of genes involved in the pathogenesis of Staphylococcus aureus is controlled by global regulatory loci, including two-component regulatory systems and transcriptional regulators. The staphylococcal-specific SarA family of transcription regulators control large numbers of target genes involved in virulence, autolysis, biofilm formation, stress responses and metabolic processes, and are recognized as potential therapeutic targets. Expression of some of these important regulators has been examined, mostly in laboratory strains, while the pattern of expression of these genes in other strains, especially clinical isolates, is largely unknown. In this report, a comparative analysis of 10 sarA-family genes was conducted in six different S. aureus strains, including two laboratory (RN6390, SH1000) and four clinical (MW2, Newman, COL and UAMS-1) strains, by Northern and Western blot analyses. Transcription of most of the sarA-family genes showed a strong growth phase-dependence in all strains tested. Among these genes, no difference was observed in expression of the sarA, sarV, sarT and sarU genes, while a major difference was observed in expression of the sarX gene only in strain RN6390. Expression of mgrA, rot, sarZ, sarR and sarS was observed in all strains, but the level of expression varied from strain to strain.
-
- Microbial Pathogenicity
-
-
-
Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis
More LessMultiple bacterial species often coexist as communities, and compete for environmental resources. Here, we describe how an opportunistic pathogen, Pseudomonas aeruginosa, uses extracellular products to interact with the nosocomial pathogen Staphylococcus epidermidis. S. epidermidis biofilms and planktonic cultures were challenged with P. aeruginosa supernatant cultures overnight. Results indicated that quorum-sensing-controlled factors from P. aeruginosa supernatant inhibited S. epidermidis growth in planktonic cultures. We also found that P. aeruginosa extracellular products, mainly polysaccharides, disrupted established S. epidermidis biofilms. Cellulase-treated P. aeruginosa supernatant, and supernatant from pelA, pslF and pelApslBCD mutants, which are deficient in polysaccharide biosynthesis, diminished the disruption of S. epidermidis biofilms. In contrast, S. epidermidis supernatant in overnight cultures had no effect on established P. aeruginosa biofilms and planktonic growth. These findings reveal that P. aeruginosa extracellular products are important microbial competition factors that overcome competition with S. epidermidis, and the results may provide clues for the development of a novel strategy for controlling S. epidermidis biofilms.
-
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
