1887

Abstract

The combined use of confocal laser scanning microscopy (CLSM) and fluorescent hybridization (FISH) offers new opportunities for analysis of the spatial relationships and temporal changes of specific members of the microbiota of intact dental biofilms. The purpose of this study was to analyse the patterns of colonization and population dynamics of compared to streptococci and other bacteria during the initial 48 h of biofilm formation in the oral cavity. Biofilms developed on standardized glass slabs mounted in intra-oral appliances worn by ten individuals for 6, 12, 24 and 48 h. The biofilms were subsequently labelled with probes against (ACT476), streptococci (STR405) or all bacteria (EUB338), and were analysed by CLSM. Labelled bacteria were quantified by stereological tools. The results showed a notable increase in the number of streptococci and over time, with a tendency towards a slower growth rate for compared with streptococci. was located mainly in the inner part of the multilayered biofilm, indicating that it is one of the species that attaches directly to the acquired pellicle. The participation of in the initial stages of dental biofilm formation may have important ecological consequences.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027706-0
2009-07-01
2020-07-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2116.html?itemId=/content/journal/micro/10.1099/mic.0.027706-0&mimeType=html&fmt=ahah

References

  1. Abramoff M. D., Viergever M. A.. 2002; Computation and visualization of three-dimensional soft tissue motion in the orbit. IEEE Trans Med Imaging21:296–304
    [Google Scholar]
  2. Al-Ahmad A., Wunder A., Auschill T. M., Follo M., Braun G., Hellwig E., Arweiler N. B.. 2007; The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization. J Med Microbiol56:681–687
    [Google Scholar]
  3. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A.. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol56:1919–1925
    [Google Scholar]
  4. Amann R. I., Ludwig W., Schleifer K. H.. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev59:143–169
    [Google Scholar]
  5. Anwar H., Strap J. L., Costerton J. W.. 1992; Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother36:1347–1351
    [Google Scholar]
  6. Auschill T. M., Hellwig E., Sculean A., Hein N., Arweiler N. B.. 2004; Impact of the intraoral location on the rate of biofilm growth. Clin Oral Investig8:97–101
    [Google Scholar]
  7. Beckers H. J., van der Hoeven J. S.. 1984; The effects of mutual interaction and host diet on the growth rates of the bacteria Actinomyces viscosus and Streptococcus mutans during colonization of tooth surfaces in di-associated gnotobiotic rats. Arch Oral Biol29:231–236
    [Google Scholar]
  8. Berthold P., Lai C. H., Listgarten M. A.. 1982; Immunoelectron microscopic studies of Actinomyces viscosus. J Periodontal Res17:26–40
    [Google Scholar]
  9. Bloomquist C. G., Reilly B. E., Liljemark W. F.. 1996; Adherence, accumulation, and cell division of a natural adherent bacterial population. J Bacteriol178:1172–1177
    [Google Scholar]
  10. Bos R., van der Mei H. C., Busscher H. J.. 1996; Co-adhesion of oral microbial pairs under flow in the presence of saliva and lactose. J Dent Res75:809–815
    [Google Scholar]
  11. Costerton J. W., Cook G., Lamont R.. 1999; The community architecture of biofilms: dynamic structures and mechanisms. In Dental Plaque Revisited. Oral Biofilms in Health and Disease, pp5–14 Edited by Newman H. N., Wilson M.. Cardiff, UK: Bioline;
    [Google Scholar]
  12. Daims H., Bruhl A., Amann R., Schleifer K. H., Wagner M.. 1999; The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol22:434–444
    [Google Scholar]
  13. Davies D.. 2003; Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov2:114–122
    [Google Scholar]
  14. Diaz P. I., Chalmers N. I., Rickard A. H., Kong C., Milburn C. L., Palmer R. J. Jr, Kolenbrander P. E.. 2006; Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol72:2837–2848
    [Google Scholar]
  15. Dige I., Nilsson H., Kilian M., Nyvad B.. 2007; In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur J Oral Sci115:459–467
    [Google Scholar]
  16. Dige I., Nyengaard J. R., Kilian M., Nyvad B.. 2009; Application of stereological principles for quantification of bacteria in intact dental biofilms. Oral Microbiol Immunol24:69–75
    [Google Scholar]
  17. DuPont G. A.. 1997; Understanding dental plaque; biofilm dynamics. J Vet Dent14:91–94
    [Google Scholar]
  18. Gibbons R. J., Nygaard M.. 1970; Interbacterial aggregation of plaque bacteria. Arch Oral Biol15:1397–1400
    [Google Scholar]
  19. Gmür R., Lüthi-Schaller H.. 2007; A combined immunofluorescence and fluorescent in situ hybridization assay for single cell analyses of dental plaque microorganisms. J Microbiol Methods69:402–405
    [Google Scholar]
  20. Gundersen H. J.. 1977; Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc111:219–223
    [Google Scholar]
  21. Gundersen H. J.. 1986; Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc143:3–45
    [Google Scholar]
  22. Gundersen H. J., Jensen E. B.. 1987; The efficiency of systematic sampling in stereology and its prediction. J Microsc147:229–263
    [Google Scholar]
  23. Gundersen H. J., Jensen E. B., Kieu K., Nielsen J.. 1999; The efficiency of systematic sampling in stereology – reconsidered. J Microsc193:199–211
    [Google Scholar]
  24. Haffajee A. D., Socransky S. S., Patel M. R., Song X.. 2008; Microbial complexes in supragingival plaque. Oral Microbiol Immunol23:196–205
    [Google Scholar]
  25. Hannig C., Hannig M., Rehmer O., Braun G., Hellwig E., Al-Ahmad A.. 2007; Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol52:1048–1056
    [Google Scholar]
  26. Jakubovics N. S., Gill S. R., Iobst S. E., Vickerman M. M., Kolenbrander P. E.. 2008; Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol190:3646–3657
    [Google Scholar]
  27. Kilian M., Larsen M. J., Fejerskov O., Thylstrup A.. 1979; Effects of fluoride on the initial colonization of teeth in vivo. Caries Res13:319–329
    [Google Scholar]
  28. Kolenbrander P. E.. 1988; Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu Rev Microbiol42:627–656
    [Google Scholar]
  29. Kolenbrander P. E., Andersen R. N., Moore L. V.. 1990; Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl Environ Microbiol56:3890–3894
    [Google Scholar]
  30. Kolenbrander P. E., Palmer R. J. Jr, Rickard A. H., Jakubovics N. S., Chalmers N. I., Diaz P. I.. 2006; Bacterial interactions and successions during plaque development. Periodontol 2000;42:47–79
    [Google Scholar]
  31. Li J., Helmerhorst E. J., Leone C. W., Troxler R. F., Yaskell T., Haffajee A. D., Socransky S. S., Oppenheim F. G.. 2004; Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol97:1311–1318
    [Google Scholar]
  32. Listgarten M. A., Mayo H. E., Tremblay R.. 1975; Development of dental plaque on epoxy resin crowns in man. A light and electron microscopic study. J Periodontol46:10–26
    [Google Scholar]
  33. Moter A., Göbel U. B.. 2000; Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods41:85–112
    [Google Scholar]
  34. Müller E., Schade M., Lemmer H.. 2007; Filamentous scum bacteria in activated sludge plants: detection and identification quality by conventional activated sludge microscopy versus fluorescence in situ hybridization. Water Environ Res79:2274–2286
    [Google Scholar]
  35. Nyengaard J. R.. 1999; Stereologic methods and their application in kidney research. J Am Soc Nephrol10:1100–1123
    [Google Scholar]
  36. Nyvad B., Fejerskov O.. 1987a; Scanning electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand J Dent Res95:287–296
    [Google Scholar]
  37. Nyvad B., Fejerskov O.. 1987b; Transmission electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand J Dent Res95:297–307
    [Google Scholar]
  38. Nyvad B., Fejerskov O.. 1989; Structure of dental plaque and the plaque-enamel interface in human experimental caries. Caries Res23:151–158
    [Google Scholar]
  39. Nyvad B., Kilian M.. 1987; Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res95:369–380
    [Google Scholar]
  40. Nyvad B., Kilian M.. 1990; Microflora associated with experimental root surface caries in humans. Infect Immun58:1628–1633
    [Google Scholar]
  41. Ørstavik D.. 1984; Initial bacterial adhesion to surfaces: ecological implications in dental plaque formation. In Bacterial Adhesion and Preventive Dentistry pp153–166 Edited by ten Cate J. M., Leach S. A., Arends J.. Washington, DC: IRL Press;
    [Google Scholar]
  42. Palmer R. J., Gordon S. M., Cisar J. O., Kolenbrander P. E.. 2003; Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol185:3400–3409
    [Google Scholar]
  43. Paster B. J., Bartoszyk I. M., Dewhirst F. E.. 1998; Identification of oral streptococci using PCR-based, reverse-capture, checkerboard hybridization. Methods Cell Sci20:223–231
    [Google Scholar]
  44. Pratten J., Andrews C. S., Craig D. Q., Wilson M.. 2000; Structural studies of microcosm dental plaques grown under different nutritional conditions. FEMS Microbiol Lett189:215–218
    [Google Scholar]
  45. Ramberg P., Sekino S., Uzel N. G., Socransky S., Lindhe J.. 2003; Bacterial colonization during de novo plaque formation. J Clin Periodontol30:990–995
    [Google Scholar]
  46. Rasband W. S.. 1997–2006; ImageJ US National Institutes of Health; Bethesda, Maryland, USA:1–34s
    [Google Scholar]
  47. Ritz H. L.. 1967; Microbial population shifts in developing human dental plaque. Arch Oral Biol12:1561–1568
    [Google Scholar]
  48. Rosan B., Lai C. H., Listgarten M. A.. 1976; Streptococcus sanguis: a model in the application in immunochemical analysis for the in situ localization of bacteria in dental plaque. J Dent Res55:A124–A141
    [Google Scholar]
  49. Schroeder H. E., De Boever J. A.. 1970; The structure of microbial dental plaque. In Dental Plaque pp49–70 Edited by McHugh W. D.. Dundee: C.D. Thomson & Co;
    [Google Scholar]
  50. Schuppler M., Wagner M., Schön G., Göbel U. B.. 1998; In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes. Microbiology144:249–259
    [Google Scholar]
  51. Shapiro J. A.. 1998; Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol52:81–104
    [Google Scholar]
  52. Skopek R. J., Liljemark W. F., Bloomquist C. G., Rudney J. D.. 1993; Dental plaque development on defined streptococcal surfaces. Oral Microbiol Immunol8:16–23
    [Google Scholar]
  53. Socransky S. S., Manganiello A. D., Propas D., Oram V., van Houte J.. 1977; Bacteriological studies of developing supragingival dental plaque. J Periodontal Res12:90–106
    [Google Scholar]
  54. Stahl D. A., Amann R.. 1991; Development and application of nucleic acid probes. In Nucleic Acid Techniques in Bacterial Systematics , 1st edn. pp205–248 Edited by Stackebrandt E., Goodfellow M. Chichester, UK: Wiley;
    [Google Scholar]
  55. Syed S. A., Loesche W. J.. 1978; Bacteriology of human experimental gingivitis: effect of plaque age. Infect Immun21:821–829
    [Google Scholar]
  56. Takahashi N., Nyvad B.. 2008; Caries ecology revisited: microbial dynamics and the caries process. Caries Res42:409–418
    [Google Scholar]
  57. Takahashi N., Yamada T.. 1996; Catabolic pathway for aerobic degradation of lactate by Actinomyces naeslundii. Oral Microbiol Immunol11:193–198
    [Google Scholar]
  58. Takahashi N., Kalfas S., Yamada T.. 1995; Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii. J Bacteriol177:5806–5811
    [Google Scholar]
  59. Tamura K., Dudley J., Nei M., Kumar S.. 2007; mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol24:1596–1599
    [Google Scholar]
  60. Thurnheer T., Gmür R., Guggenheim B.. 2004; Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods56:37–47
    [Google Scholar]
  61. van der Hoeven J. S., van den Kieboom C. W.. 1990; Oxygen-dependent lactate utilization by Actinomyces viscosus and Actinomyces naeslundii. Oral Microbiol Immunol5:223–225
    [Google Scholar]
  62. van Palenstein Helderman W. H.. 1981; Longitudinal microbial changes in developing human supragingival and subgingival dental plague. Arch Oral Biol26:7–12
    [Google Scholar]
  63. Van Wuyckhuyse B. C., Perinpanayagam H. E., Bevacqua D., Raubertas R. F., Billings R. J., Bowen W. H., Tabak L. A.. 1995; Association of free arginine and lysine concentrations in human parotid saliva with caries experience. J Dent Res74:686–690
    [Google Scholar]
  64. Wood S. R., Kirkham J., Marsh P. D., Shore R. C., Nattress B., Robinson C.. 2000; Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res79:21–27
    [Google Scholar]
  65. Yaling L., Tao H., Jingyi Z., Xuedong Z.. 2006; Characterization of the Actinomyces naeslundii ureolysis and its role in bacterial aciduricity and capacity to modulate pH homeostasis. Microbiol Res161:304–310
    [Google Scholar]
  66. Yoshida Y., Palmer R. J., Yang J., Kolenbrander P. E., Cisar J. O.. 2006; Streptococcal receptor polysaccharides: recognition molecules for oral biofilm formation. BMC Oral Health6:Suppl 1S12
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027706-0
Loading
/content/journal/micro/10.1099/mic.0.027706-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error