1887

Abstract

The combined use of confocal laser scanning microscopy (CLSM) and fluorescent hybridization (FISH) offers new opportunities for analysis of the spatial relationships and temporal changes of specific members of the microbiota of intact dental biofilms. The purpose of this study was to analyse the patterns of colonization and population dynamics of compared to streptococci and other bacteria during the initial 48 h of biofilm formation in the oral cavity. Biofilms developed on standardized glass slabs mounted in intra-oral appliances worn by ten individuals for 6, 12, 24 and 48 h. The biofilms were subsequently labelled with probes against (ACT476), streptococci (STR405) or all bacteria (EUB338), and were analysed by CLSM. Labelled bacteria were quantified by stereological tools. The results showed a notable increase in the number of streptococci and over time, with a tendency towards a slower growth rate for compared with streptococci. was located mainly in the inner part of the multilayered biofilm, indicating that it is one of the species that attaches directly to the acquired pellicle. The participation of in the initial stages of dental biofilm formation may have important ecological consequences.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027706-0
2009-07-01
2019-09-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2116.html?itemId=/content/journal/micro/10.1099/mic.0.027706-0&mimeType=html&fmt=ahah

References

  1. Abramoff, M. D. & Viergever, M. A. ( 2002; ). Computation and visualization of three-dimensional soft tissue motion in the orbit. IEEE Trans Med Imaging 21, 296–304.[CrossRef]
    [Google Scholar]
  2. Al-Ahmad, A., Wunder, A., Auschill, T. M., Follo, M., Braun, G., Hellwig, E. & Arweiler, N. B. ( 2007; ). The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization. J Med Microbiol 56, 681–687.[CrossRef]
    [Google Scholar]
  3. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925.
    [Google Scholar]
  4. Amann, R. I., Ludwig, W. & Schleifer, K. H. ( 1995; ). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143–169.
    [Google Scholar]
  5. Anwar, H., Strap, J. L. & Costerton, J. W. ( 1992; ). Establishment of aging biofilms: possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother 36, 1347–1351.[CrossRef]
    [Google Scholar]
  6. Auschill, T. M., Hellwig, E., Sculean, A., Hein, N. & Arweiler, N. B. ( 2004; ). Impact of the intraoral location on the rate of biofilm growth. Clin Oral Investig 8, 97–101.
    [Google Scholar]
  7. Beckers, H. J. & van der Hoeven, J. S. ( 1984; ). The effects of mutual interaction and host diet on the growth rates of the bacteria Actinomyces viscosus and Streptococcus mutans during colonization of tooth surfaces in di-associated gnotobiotic rats. Arch Oral Biol 29, 231–236.[CrossRef]
    [Google Scholar]
  8. Berthold, P., Lai, C. H. & Listgarten, M. A. ( 1982; ). Immunoelectron microscopic studies of Actinomyces viscosus. J Periodontal Res 17, 26–40.[CrossRef]
    [Google Scholar]
  9. Bloomquist, C. G., Reilly, B. E. & Liljemark, W. F. ( 1996; ). Adherence, accumulation, and cell division of a natural adherent bacterial population. J Bacteriol 178, 1172–1177.
    [Google Scholar]
  10. Bos, R., van der Mei, H. C. & Busscher, H. J. ( 1996; ). Co-adhesion of oral microbial pairs under flow in the presence of saliva and lactose. J Dent Res 75, 809–815.[CrossRef]
    [Google Scholar]
  11. Costerton, J. W., Cook, G. & Lamont, R. ( 1999; ). The community architecture of biofilms: dynamic structures and mechanisms. In Dental Plaque Revisited. Oral Biofilms in Health and Disease, pp. 5–14. Edited by H. N. Newman & M. Wilson. Cardiff, UK: Bioline.
  12. Daims, H., Bruhl, A., Amann, R., Schleifer, K. H. & Wagner, M. ( 1999; ). The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22, 434–444.[CrossRef]
    [Google Scholar]
  13. Davies, D. ( 2003; ). Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2, 114–122.[CrossRef]
    [Google Scholar]
  14. Diaz, P. I., Chalmers, N. I., Rickard, A. H., Kong, C., Milburn, C. L., Palmer, R. J., Jr & Kolenbrander, P. E. ( 2006; ). Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl Environ Microbiol 72, 2837–2848.[CrossRef]
    [Google Scholar]
  15. Dige, I., Nilsson, H., Kilian, M. & Nyvad, B. ( 2007; ). In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur J Oral Sci 115, 459–467.[CrossRef]
    [Google Scholar]
  16. Dige, I., Nyengaard, J. R., Kilian, M. & Nyvad, B. ( 2009; ). Application of stereological principles for quantification of bacteria in intact dental biofilms. Oral Microbiol Immunol 24, 69–75.[CrossRef]
    [Google Scholar]
  17. DuPont, G. A. ( 1997; ). Understanding dental plaque; biofilm dynamics. J Vet Dent 14, 91–94.
    [Google Scholar]
  18. Gibbons, R. J. & Nygaard, M. ( 1970; ). Interbacterial aggregation of plaque bacteria. Arch Oral Biol 15, 1397–1400.[CrossRef]
    [Google Scholar]
  19. Gmür, R. & Lüthi-Schaller, H. ( 2007; ). A combined immunofluorescence and fluorescent in situ hybridization assay for single cell analyses of dental plaque microorganisms. J Microbiol Methods 69, 402–405.[CrossRef]
    [Google Scholar]
  20. Gundersen, H. J. ( 1977; ). Notes on the estimation of the numerical density of arbitrary profiles: the edge effect. J Microsc 111, 219–223.[CrossRef]
    [Google Scholar]
  21. Gundersen, H. J. ( 1986; ). Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143, 3–45.[CrossRef]
    [Google Scholar]
  22. Gundersen, H. J. & Jensen, E. B. ( 1987; ). The efficiency of systematic sampling in stereology and its prediction. J Microsc 147, 229–263.[CrossRef]
    [Google Scholar]
  23. Gundersen, H. J., Jensen, E. B., Kieu, K. & Nielsen, J. ( 1999; ). The efficiency of systematic sampling in stereology – reconsidered. J Microsc 193, 199–211.[CrossRef]
    [Google Scholar]
  24. Haffajee, A. D., Socransky, S. S., Patel, M. R. & Song, X. ( 2008; ). Microbial complexes in supragingival plaque. Oral Microbiol Immunol 23, 196–205.[CrossRef]
    [Google Scholar]
  25. Hannig, C., Hannig, M., Rehmer, O., Braun, G., Hellwig, E. & Al-Ahmad, A. ( 2007; ). Fluorescence microscopic visualization and quantification of initial bacterial colonization on enamel in situ. Arch Oral Biol 52, 1048–1056.[CrossRef]
    [Google Scholar]
  26. Jakubovics, N. S., Gill, S. R., Iobst, S. E., Vickerman, M. M. & Kolenbrander, P. E. ( 2008; ). Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol 190, 3646–3657.[CrossRef]
    [Google Scholar]
  27. Kilian, M., Larsen, M. J., Fejerskov, O. & Thylstrup, A. ( 1979; ). Effects of fluoride on the initial colonization of teeth in vivo. Caries Res 13, 319–329.[CrossRef]
    [Google Scholar]
  28. Kolenbrander, P. E. ( 1988; ). Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu Rev Microbiol 42, 627–656.[CrossRef]
    [Google Scholar]
  29. Kolenbrander, P. E., Andersen, R. N. & Moore, L. V. ( 1990; ). Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl Environ Microbiol 56, 3890–3894.
    [Google Scholar]
  30. Kolenbrander, P. E., Palmer, R. J., Jr, Rickard, A. H., Jakubovics, N. S., Chalmers, N. I. & Diaz, P. I. ( 2006; ). Bacterial interactions and successions during plaque development. Periodontol 2000 42, 47–79.[CrossRef]
    [Google Scholar]
  31. Li, J., Helmerhorst, E. J., Leone, C. W., Troxler, R. F., Yaskell, T., Haffajee, A. D., Socransky, S. S. & Oppenheim, F. G. ( 2004; ). Identification of early microbial colonizers in human dental biofilm. J Appl Microbiol 97, 1311–1318.[CrossRef]
    [Google Scholar]
  32. Listgarten, M. A., Mayo, H. E. & Tremblay, R. ( 1975; ). Development of dental plaque on epoxy resin crowns in man. A light and electron microscopic study. J Periodontol 46, 10–26.[CrossRef]
    [Google Scholar]
  33. Moter, A. & Göbel, U. B. ( 2000; ). Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41, 85–112.[CrossRef]
    [Google Scholar]
  34. Müller, E., Schade, M. & Lemmer, H. ( 2007; ). Filamentous scum bacteria in activated sludge plants: detection and identification quality by conventional activated sludge microscopy versus fluorescence in situ hybridization. Water Environ Res 79, 2274–2286.[CrossRef]
    [Google Scholar]
  35. Nyengaard, J. R. ( 1999; ). Stereologic methods and their application in kidney research. J Am Soc Nephrol 10, 1100–1123.
    [Google Scholar]
  36. Nyvad, B. & Fejerskov, O. ( 1987a; ). Scanning electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95, 287–296.
    [Google Scholar]
  37. Nyvad, B. & Fejerskov, O. ( 1987b; ). Transmission electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95, 297–307.
    [Google Scholar]
  38. Nyvad, B. & Fejerskov, O. ( 1989; ). Structure of dental plaque and the plaque-enamel interface in human experimental caries. Caries Res 23, 151–158.[CrossRef]
    [Google Scholar]
  39. Nyvad, B. & Kilian, M. ( 1987; ). Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95, 369–380.
    [Google Scholar]
  40. Nyvad, B. & Kilian, M. ( 1990; ). Microflora associated with experimental root surface caries in humans. Infect Immun 58, 1628–1633.
    [Google Scholar]
  41. Ørstavik, D. ( 1984; ). Initial bacterial adhesion to surfaces: ecological implications in dental plaque formation. In Bacterial Adhesion and Preventive Dentistry, pp. 153–166. Edited by J. M. ten Cate, S. A. Leach & J. Arends. Washington, DC: IRL Press.
  42. Palmer, R. J., Gordon, S. M., Cisar, J. O. & Kolenbrander, P. E. ( 2003; ). Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol 185, 3400–3409.[CrossRef]
    [Google Scholar]
  43. Paster, B. J., Bartoszyk, I. M. & Dewhirst, F. E. ( 1998; ). Identification of oral streptococci using PCR-based, reverse-capture, checkerboard hybridization. Methods Cell Sci 20, 223–231.[CrossRef]
    [Google Scholar]
  44. Pratten, J., Andrews, C. S., Craig, D. Q. & Wilson, M. ( 2000; ). Structural studies of microcosm dental plaques grown under different nutritional conditions. FEMS Microbiol Lett 189, 215–218.[CrossRef]
    [Google Scholar]
  45. Ramberg, P., Sekino, S., Uzel, N. G., Socransky, S. & Lindhe, J. ( 2003; ). Bacterial colonization during de novo plaque formation. J Clin Periodontol 30, 990–995.[CrossRef]
    [Google Scholar]
  46. Rasband, W. S. ( 1997–2006; ). ImageJ. US National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/. 1.34s.
  47. Ritz, H. L. ( 1967; ). Microbial population shifts in developing human dental plaque. Arch Oral Biol 12, 1561–1568.[CrossRef]
    [Google Scholar]
  48. Rosan, B., Lai, C. H. & Listgarten, M. A. ( 1976; ). Streptococcus sanguis: a model in the application in immunochemical analysis for the in situ localization of bacteria in dental plaque. J Dent Res 55, A124–A141.[CrossRef]
    [Google Scholar]
  49. Schroeder, H. E. & De Boever, J. A. ( 1970; ). The structure of microbial dental plaque. In Dental Plaque, pp. 49–70. Edited by W. D. McHugh. Dundee: C.D. Thomson & Co.
  50. Schuppler, M., Wagner, M., Schön, G. & Göbel, U. B. ( 1998; ). In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNA-targeted oligonucleotide probes. Microbiology 144, 249–259.[CrossRef]
    [Google Scholar]
  51. Shapiro, J. A. ( 1998; ). Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52, 81–104.[CrossRef]
    [Google Scholar]
  52. Skopek, R. J., Liljemark, W. F., Bloomquist, C. G. & Rudney, J. D. ( 1993; ). Dental plaque development on defined streptococcal surfaces. Oral Microbiol Immunol 8, 16–23.[CrossRef]
    [Google Scholar]
  53. Socransky, S. S., Manganiello, A. D., Propas, D., Oram, V. & van Houte, J. ( 1977; ). Bacteriological studies of developing supragingival dental plaque. J Periodontal Res 12, 90–106.[CrossRef]
    [Google Scholar]
  54. Stahl, D. A. & Amann, R. ( 1991; ). Development and application of nucleic acid probes. In Nucleic Acid Techniques in Bacterial Systematics, 1st edn, pp. 205–248. Edited by E. Stackebrandt & M. Goodfellow. Chichester, UK: Wiley.
  55. Syed, S. A. & Loesche, W. J. ( 1978; ). Bacteriology of human experimental gingivitis: effect of plaque age. Infect Immun 21, 821–829.
    [Google Scholar]
  56. Takahashi, N. & Nyvad, B. ( 2008; ). Caries ecology revisited: microbial dynamics and the caries process. Caries Res 42, 409–418.[CrossRef]
    [Google Scholar]
  57. Takahashi, N. & Yamada, T. ( 1996; ). Catabolic pathway for aerobic degradation of lactate by Actinomyces naeslundii. Oral Microbiol Immunol 11, 193–198.[CrossRef]
    [Google Scholar]
  58. Takahashi, N., Kalfas, S. & Yamada, T. ( 1995; ). Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii. J Bacteriol 177, 5806–5811.
    [Google Scholar]
  59. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: Molecular Evolutionary Genetics Analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  60. Thurnheer, T., Gmür, R. & Guggenheim, B. ( 2004; ). Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods 56, 37–47.[CrossRef]
    [Google Scholar]
  61. van der Hoeven, J. S. & van den Kieboom, C. W. ( 1990; ). Oxygen-dependent lactate utilization by Actinomyces viscosus and Actinomyces naeslundii. Oral Microbiol Immunol 5, 223–225.[CrossRef]
    [Google Scholar]
  62. van Palenstein Helderman, W. H. ( 1981; ). Longitudinal microbial changes in developing human supragingival and subgingival dental plague. Arch Oral Biol 26, 7–12.[CrossRef]
    [Google Scholar]
  63. Van Wuyckhuyse, B. C., Perinpanayagam, H. E., Bevacqua, D., Raubertas, R. F., Billings, R. J., Bowen, W. H. & Tabak, L. A. ( 1995; ). Association of free arginine and lysine concentrations in human parotid saliva with caries experience. J Dent Res 74, 686–690.[CrossRef]
    [Google Scholar]
  64. Wood, S. R., Kirkham, J., Marsh, P. D., Shore, R. C., Nattress, B. & Robinson, C. ( 2000; ). Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res 79, 21–27.[CrossRef]
    [Google Scholar]
  65. Yaling, L., Tao, H., Jingyi, Z. & Xuedong, Z. ( 2006; ). Characterization of the Actinomyces naeslundii ureolysis and its role in bacterial aciduricity and capacity to modulate pH homeostasis. Microbiol Res 161, 304–310.[CrossRef]
    [Google Scholar]
  66. Yoshida, Y., Palmer, R. J., Yang, J., Kolenbrander, P. E. & Cisar, J. O. ( 2006; ). Streptococcal receptor polysaccharides: recognition molecules for oral biofilm formation. BMC Oral Health 6 (Suppl 1), S12 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027706-0
Loading
/content/journal/micro/10.1099/mic.0.027706-0
Loading

Data & Media loading...

vol. , part 7, pp. 2116 - 2126

Plots of the number of spp. (Dige ., 2009) (a) and the number of (b) recorded in dental biofilms developed within 6, 12, 24 and 48 h in 10 individuals. Note the logarithmic scale on the axis. The estimated numbers refer to a well-defined reference space that corresponds to an area of 4 mm . Each individual is identified by identical colour in (a) and (b). [ PDF] (32 kb) Application of stereological principles for quantification of bacteria in intact dental biofilms. , 69-75.



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error