1887

Abstract

Numerous strategies allowing bacteria to detect and respond to oxidative conditions depend on the cell redox state. Here we examined the ability of to survive aerobically in the presence of the reducing agent dithiothreitol (DTT), which would be expected to modify the cell redox state and disable the oxidative stress response. DTT inhibited growth at 37 °C in aerobic conditions, but not in anaerobiosis. Mutants selected as DTT resistant all mapped to the locus, encoding a high-affinity phosphate transporter. Transcription of and a downstream putative regulator of stress response, , was deregulated in a strain, but amounts of major oxidative stress proteins were unchanged. As metals participate in oxygen radical formation, we compared metal sensitivity of wild-type and strains. The mutant showed approximately 100-fold increased resistance to copper and zinc. Furthermore, copper or zinc addition exacerbated the sensitivity of a wild-type strain to DTT. Inactivation of conferred a more general resistance to oxidative stress, alleviating the oxygen- and thermo-sensitivity of a mutant. This study establishes a role for the locus in metal homeostasis, suggesting that inactivation lowers intracellular reactivity of copper and zinc, which would limit bacterial sensitivity to oxygen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027797-0
2009-07-01
2020-10-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2274.html?itemId=/content/journal/micro/10.1099/mic.0.027797-0&mimeType=html&fmt=ahah

References

  1. Alvarez S., Jerez C. A.. 2004; Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl Environ Microbiol70:5177–5182
    [Google Scholar]
  2. Arnau J., Sorensen K. I., Appel K. F., Vogensen F. K., Hammer K.. 1996; Analysis of heat shock gene expression in Lactococcus lactis MG1363. Microbiology142:1685–1691
    [Google Scholar]
  3. Beard S. J., Hashim R., Wu G., Binet M. R., Hughes M. N., Poole R. K.. 2000; Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol Lett184:231–235
    [Google Scholar]
  4. Benov L., Fridovich I.. 1995; Superoxide dismutase protects against aerobic heat shock in Escherichia coli. J Bacteriol177:3344–3346
    [Google Scholar]
  5. Budin-Verneuil A., Pichereau V., Auffray Y., Ehrlich D. S., Maguin E.. 2005; Proteomic characterization of the acid tolerance response in Lactococcus lactis MG1363. Proteomics5:4794–4807
    [Google Scholar]
  6. Budin-Verneuil A., Pichereau V., Auffray Y., Ehrlich S., Maguin E.. 2007; Proteome phenotyping of acid stress-resistant mutants of Lactococcus lactis MG1363. Proteomics7:2038–2046
    [Google Scholar]
  7. Duwat P., Ehrlich S. D., Gruss A.. 1995; The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Mol Microbiol17:1121–1131
    [Google Scholar]
  8. Duwat P., Sourice S., Cesselin B.. other authors 2001; Respiration capacity of the fermenting bacterium Lactococcus lactis and its positive effects on growth and survival. J Bacteriol183:4509–4516
    [Google Scholar]
  9. Fraser K. R., Tuite N. L., Bhagwat A., O'Byrne C. P.. 2006; Global effects of homocysteine on transcription in Escherichia coli: induction of the gene for the major cold-shock protein, CspA. Microbiology152:2221–2231
    [Google Scholar]
  10. Frees D., Ingmer H.. 1999; ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol Microbiol31:79–87
    [Google Scholar]
  11. Frees D., Varmanen P., Ingmer H.. 2001; Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis. Mol Microbiol41:93–103
    [Google Scholar]
  12. Frees D., Qazi S. N., Hill P. J., Ingmer H.. 2003; Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol48:1565–1578
    [Google Scholar]
  13. Gaudu P., Vido K., Cesselin B.. other authors 2002; Respiration capacity and consequences in Lactococcus lactis. Antonie Van Leeuwenhoek82:263–269
    [Google Scholar]
  14. Gaudu P., Lamberet G., Poncet S., Gruss A.. 2003; CcpA regulation of aerobic and respiration growth in Lactococcus lactis. Mol Microbiol50:183–192
    [Google Scholar]
  15. Gostick D. O., Griffin H. G., Shearman C. A., Scott C., Green J., Gasson M. J., Guest J. R.. 1999; Two operons that encode FNR-like proteins in Lactococcus lactis. Mol Microbiol31:1523–1535
    [Google Scholar]
  16. Graf P. C., Jakob U.. 2002; Redox-regulated molecular chaperones. Cell Mol Life Sci59:1624–1631
    [Google Scholar]
  17. Guillot A., Gitton C., Anglade P., Mistou M.-Y.. 2003; Proteomic analysis of Lactococcus lactis, a lactic acid bacterium. Proteomics3:337–354
    [Google Scholar]
  18. Hiniker A., Collet J. F., Bardwell J. C.. 2005; Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J Biol Chem280:33785–33791
    [Google Scholar]
  19. Imlay J. A.. 2008; Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem77:755–776
    [Google Scholar]
  20. Jensen L. T., Ajua-Alemanji M., Culotta V. C.. 2003; The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J Biol Chem278:42036–42040
    [Google Scholar]
  21. Keyer K., Imlay J. A.. 1996; Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A93:13635–13640
    [Google Scholar]
  22. Kock H., Gerth U., Hecker M.. 2004; The ClpP peptidase is the major determinant of bulk protein turnover in Bacillus subtilis. J Bacteriol186:5856–5864
    [Google Scholar]
  23. Leloup L., Ehrlich S. D., Zagorec M., Morel-Deville F.. 1997; Single-crossover integration in the Lactobacillus sake chromosome and insertional inactivation of the ptsI and lacL genes. Appl Environ Microbiol63:2117–2123
    [Google Scholar]
  24. Li Y., Zhang Y.. 2007; PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob Agents Chemother51:2092–2099
    [Google Scholar]
  25. Li Y., Hugenholtz J., Abee T., Molenaar D.. 2003; Glutathione protects Lactococcus lactis against oxidative stress. Appl Environ Microbiol69:5739–5745
    [Google Scholar]
  26. Llull D., Poquet I.. 2004; New expression system tightly controlled by zinc availability in Lactococcus lactis. Appl Environ Microbiol70:5398–5406
    [Google Scholar]
  27. Maguin E., Prevost H., Ehrlich S. D., Gruss A.. 1996; Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol178:931–935
    [Google Scholar]
  28. Maret W.. 2006; Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal8:1419–1441
    [Google Scholar]
  29. O'Connor D.. 2007; The world market for cheese 1995–2004. Int J Dairy Technol60:66–67
    [Google Scholar]
  30. Rallu F., Gruss A., Ehrlich S. D., Maguin E.. 2000; Acid- and multistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals. Mol Microbiol35:517–528
    [Google Scholar]
  31. Rezaiki L., Cesselin B., Yamamoto Y., Vido K., van West E., Gaudu P., Gruss A.. 2004; Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis. Mol Microbiol53:1331–1342
    [Google Scholar]
  32. Robertson G. T., Ng W. L., Foley J., Gilmour R., Winkler M. E.. 2002; Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J Bacteriol184:3508–3520
    [Google Scholar]
  33. Sanders J. W., Leenhouts K. J., Haandrikman A. J., Venema G., Kok J.. 1995; Stress response in Lactococcus lactis: cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J Bacteriol177:5254–5260
    [Google Scholar]
  34. Schutzendubel A., Polle A.. 2002; Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot53:1351–1365
    [Google Scholar]
  35. Scott C., Rawsthorne H., Upadhyay M., Shearman C. A., Gasson M. J., Guest J. R., Green J.. 2000; Zinc uptake, oxidative stress and the FNR-like proteins of Lactococcus lactis. FEMS Microbiol Lett192:85–89
    [Google Scholar]
  36. Steed P. M., Wanner B. L.. 1993; Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J Bacteriol175:6797–6809
    [Google Scholar]
  37. Steidler L., Rottiers P.. 2006; Therapeutic drug delivery by genetically modified Lactococcus lactis. Ann N Y Acad Sci1072:176–186
    [Google Scholar]
  38. Teitzel G. M., Geddie A., De Long S. K., Kirisits M. J., Whiteley M., Parsek M. R.. 2006; Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol188:7242–7256
    [Google Scholar]
  39. Turner M. S., Tan Y. P., Giffard P. M.. 2007; Inactivation of an iron transporter in Lactococcus lactis results in resistance to tellurite and oxidative stress. Appl Environ Microbiol73:6144–6149
    [Google Scholar]
  40. van Veen H. W., Abee T., Kortstee G. J., Konings W. N., Zehnder A. J.. 1993; Mechanism and energetics of the secondary phosphate transport system of Acinetobacter johnsonii 210A. J Biol Chem268:19377–19383
    [Google Scholar]
  41. van Veen H. W., Abee T., Korstee G. J., Konings W. N., Zehnder A. J.. 1994; Translocation of metal phophate via the inorganic transport system of Escherichia coli. Biochemistry33:1766–1770
    [Google Scholar]
  42. Vido K., Le Bars D., Mistou M. Y., Anglade P., Gruss A., Gaudu P.. 2004; Proteome analyses of heme-dependent respiration in Lactococcus lactis: involvement of the proteolytic system. J Bacteriol186:1648–1657
    [Google Scholar]
  43. Vido K., Diemer H., Van Dorsselaer A., Leize E., Juillard V., Gruss A., Gaudu P.. 2005; Roles of thioredoxin reductase during the aerobic life of Lactococcus lactis. J Bacteriol187:601–610
    [Google Scholar]
  44. Wanner B. L.. 1996; Phophorus assimilation and control of the phophate regulon. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp1357–1381 Edited by Neidhardt F. C.. others Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027797-0
Loading
/content/journal/micro/10.1099/mic.0.027797-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error