1887

Abstract

Pneumococci that have developed the competent state kill and lyse non-competent sister cells and members of closely related species during co-cultivation . The key component in this process, called fratricide, is the product of the late competence gene . In addition, the peptidoglycan hydrolases LytA and LytC are required for efficient lysis of target cells. Here, we have investigated the relative contribution and possible role of each of the proteins mentioned above. Previous studies have shown that CbpD is produced exclusively by competent cells, whereas LytA and LytC can be provided by the competent attackers as well as the non-competent target cells. By using an improved assay to compare the effect of - versus -acting LytA and LytC, we were able to show that target cells are lysed much more efficiently when LytA and LytC are provided , i.e. by the target cells themselves. Western analysis demonstrated that considerable amounts of LytC are present in the growth medium. In contrast, we were not able to detect any extracellular LytA. This finding indicates that LytA- and LytC-mediated fratricide represent different processes. In the absence of LytA and LytC, only a tiny fraction of the target cells were lysed, demonstrating that CbpD does not function efficiently on its own. However, in the presence of 1 mM EDTA, the fraction of target cells lysed directly by CbpD increased dramatically, indicating that divalent cations are involved in the regulation of fratricide under natural conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026328-0
2009-07-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2223.html?itemId=/content/journal/micro/10.1099/mic.0.026328-0&mimeType=html&fmt=ahah

References

  1. Bateman A., Rawlings N. D.. 2003; The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci28:234–237
    [Google Scholar]
  2. Briese T., Hakenbeck R.. 1985; Interaction of the pneumococcal amidase with lipoteichoic acid and choline. Eur J Biochem146:417–427
    [Google Scholar]
  3. Chi F., Nolte O., Bergmann C., Ip M., Hakenbeck R.. 2007; Crossing the barrier: evolution and spread of a major class of mosaic pbp2x in Streptococcus pneumoniae, S. mitis, and S. oralis. Int J Med Microbiol297:503–512
    [Google Scholar]
  4. Claverys J. P., Håvarstein L. S.. 2007; Cannibalism and fratricide: mechanisms and raison d'être. Nat Rev Microbiol5:219–229
    [Google Scholar]
  5. Claverys J. P., Dintilhac A., Pestova E. V., Martin B., Morrison D. A.. 1995; Construction and evaluation of new drug-resistance cassettes for gene disruption mutagenesis in Streptococcus pneumoniae, using an ami test platform. Gene164:123–128
    [Google Scholar]
  6. Dagkessamanskaia A., Moscoso M., Hénard V., Guiral S., Overweg K., Reuter M., Martin B., Wells J., Claverys J. P.. 2004; Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol Microbiol51:1071–1086
    [Google Scholar]
  7. Díaz E., López R., García J. L.. 1990; Chimeric phage-bacterial enzymes: a clue to the modular evolution of genes. Proc Natl Acad Sci U S A87:8125–8129
    [Google Scholar]
  8. Dubos R. J.. 1937; Mechanism of the lysis of pneumococci by freezing and thawing, bile, and other agents. J Exp Med66:101–112
    [Google Scholar]
  9. Fiser A., Sergio R. F., Tomasz A.. 2003; Cell wall branches, penicillin resistance and the secrets of the MurM protein. Trends Microbiol11:547–553
    [Google Scholar]
  10. Giudicelli S., Tomasz A.. 1984; Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation. J Bacteriol158:1188–1190
    [Google Scholar]
  11. Guiral S., Mitchell T. J., Martin B., Claverys J. P.. 2005; Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proc Natl Acad Sci U S A102:8710–8715
    [Google Scholar]
  12. Hakenbeck R.. 1995; Target mediated resistance to β-lactam antibiotics. Biochem Pharmacol50:1121–1127
    [Google Scholar]
  13. Håvarstein L. S., Coomaraswami G., Morrison D. A.. 1995; An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci U S A92:11140–11144
    [Google Scholar]
  14. Håvarstein L. S., Gaustad P., Nes I. F., Morrison D. A.. 1996; Identification of the streptococcal competence-pheromone receptor. Mol Microbiol21:863–869
    [Google Scholar]
  15. Håvarstein L. S., Martin B., Johnsborg O., Granadel C., Claverys J. P.. 2006; New insights into the pneumococcal fratricide: relationship to clumping and identification of a novel immunity factor. Mol Microbiol59:1297–1307
    [Google Scholar]
  16. Hiller N. L., Janto B., Hogg J. S., Boissy R., Yu S., Powell E., Keefe R., Ehrlich N. E., Shen K.. other authors 2007; Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. J Bacteriol189:8186–8195
    [Google Scholar]
  17. Hui F. M., Morrison D. A.. 1991; Genetic transformation in Streptococcus pneumoniae: nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family. J Bacteriol173:372–381
    [Google Scholar]
  18. Jenkins S. G., Brown S. D., Farrell D. J.. 2008; Trends in antibacterial resistance among Streptococcus pneumoniae isolated in the USA: update from PROTEKT US Years 1–4. Ann Clin Microbiol Antimicrob7:1–11
    [Google Scholar]
  19. Johnsborg O., Eldholm V., Håvarstein L. S.. 2007; Natural genetic transformation: prevalence, mechanisms and function. Res Microbiol158:767–778
    [Google Scholar]
  20. Johnsborg O., Eldholm V., Bjørnstad M. L., Håvarstein L. S.. 2008; A predatory mechanism dramatically increases the efficiency of lateral gene transfer in Streptococcus pneumoniae and related commensal species. Mol Microbiol69:245–253
    [Google Scholar]
  21. Kausmally L., Johnsborg O., Lunde M., Knutsen E., Håvarstein L. S.. 2005; Choline-binding protein D (CbpD) in Streptococcus pneumoniae is essential for competence-induced cell lysis. J Bacteriol187:4338–4345
    [Google Scholar]
  22. Lacks S. A.. 1970; Mutants of Diplococcus pneumoniae that lack deoxy-ribonucleases and other activities possibly pertinent to genetic transformation. J Bacteriol101:373–383
    [Google Scholar]
  23. Lacks S. A., Hotchkiss R. D.. 1960; A study of the genetic material determining an enzyme activity in pneumococcus. Biochim Biophys Acta39:508–517
    [Google Scholar]
  24. Lacks S. A., Ayalew S., de la Campa A. G., Greenberg B.. 2000; Regulation of competence for genetic transformation in Streptococcus pneumoniae: expression of dpnA, a late competence gene encoding a DNA methyltransferase of the DpnII restriction system. Mol Microbiol35:1089–1098
    [Google Scholar]
  25. Lee M. S., Morrison D. A.. 1999; Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol181:5004–5016
    [Google Scholar]
  26. López R., García E.. 2004; Recent trends in the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev28:553–580
    [Google Scholar]
  27. Mascher T., Heintz M., Zähner D., Merai M., Hakenbeck R.. 2006; The CiaRH system of Streptococcus pneumoniae prevents lysis during stress induced by treatment with cell wall inhibitors and by mutations in pbp2x involved in β-lactam resistance. J Bacteriol188:1959–1968
    [Google Scholar]
  28. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Mortier-Barrière I., de Saizieu A., Claverys J. P., Martin B.. 1998; Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae. Mol Microbiol27:159–170
    [Google Scholar]
  30. Neuhaus F. C., Baddiley J.. 2003; A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev67:686–723
    [Google Scholar]
  31. Obaro S., Adegbola R.. 2002; The pneumococcus: carriage, disease, and conjugate vaccines. J Med Microbiol51:98–104
    [Google Scholar]
  32. Pestova E. V., Håvarstein L. S., Morrison D. A.. 1996; Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol21:853–862
    [Google Scholar]
  33. Peterson S. N., Sung C. K., Cline R., Desai B. V., Snesrud E. C., Luo P., Walling J., Li H., Mintz M.. other authors 2004; Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol Microbiol51:1051–1070
    [Google Scholar]
  34. Regev-Yochay G., Trzcinski K., Thompson C. M., Lipsitch M., Malley R.. 2007; SpxB is a suicide gene of Streptococcus pneumoniae and confers a selective advantage in an in vivo competitive colonization model. J Bacteriol189:6532–6539
    [Google Scholar]
  35. Rigden D. J., Jedrzejas M. J., Galperin M. Y.. 2003; Amidase domains from bacterial and phage autolysins define a family of γ-d,l-glutamate-specific amidohydrolases. Trends Biochem Sci28:230–234
    [Google Scholar]
  36. Shoemaker N. B., Guild W. R.. 1974; Destruction of low efficiency markers is a slow process occuring at a heteroduplex stage of transformation. Mol Gen Genet128:283–290
    [Google Scholar]
  37. Steinmoen H., Knutsen E., Håvarstein L. S.. 2002; Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc Natl Acad Sci U S A99:7681–7686
    [Google Scholar]
  38. Steinmoen H., Teigen A., Håvarstein L. S.. 2003; Competence induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during co-cultivation. J Bacteriol185:7176–7183
    [Google Scholar]
  39. Sung C. K., Li H., Claverys J. P., Morrison D. A.. 2001; An rpsL cassette, Janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol67:5190–5196
    [Google Scholar]
  40. Tomasz A., Waks S.. 1975a; Mechanism of action of penicillin: triggering of the pneumococcal autolytic enzyme by inhibitors of cell wall synthesis. Proc Natl Acad Sci U S A72:4162–4166
    [Google Scholar]
  41. Tomasz A., Waks S.. 1975b; Enzyme replacement in a bacterium: phenotypic correction by the experimental introduction of the wild type enzyme into a live enzyme defective mutant pneumococcus. Biochem Biophys Res Commun65:1311–1319
    [Google Scholar]
  42. Tomasz A., Westphal M.. 1971; Abnormal autolytic enzyme in a pneumococcus with altered teichoic acid composition. Proc Natl Acad Sci U S A68:2627–2630
    [Google Scholar]
  43. Ween O., Gaustad P., Håvarstein L. S.. 1999; Identification of DNA binding sites for ComE, a key regulator of natural competence in Streptococcus pneumoniae. Mol Microbiol33:817–827
    [Google Scholar]
  44. Yother J., White J. M.. 1994; Novel surface attachment mechanism of the Streptococcus pneumoniae protein PspA. J Bacteriol176:2976–2985
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026328-0
Loading
/content/journal/micro/10.1099/mic.0.026328-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error