1887

Abstract

In sp. PCC 6803 the histidine kinase SphS () is involved in transcriptional activation of the phosphate (P)-acquisition system which includes alkaline phosphatase (AP). The N-terminal region of SphS contains both a hydrophobic region and a Per-Arnt-Sim (PAS) domain. The C-terminal region has a highly conserved transmitter domain. Immunological localization studies on heterologously expressed SphS in indicate that the hydrophobic region is important for membrane localization. In order to evaluate the function of the N-terminal region of SphS, deletion mutants under the control of the native promoter were analysed for AP activity. Deletion of the N-terminal hydrophobic region resulted in loss of AP activity under both P-deficient and P-sufficient conditions. Substitution of the hydrophobic region of SphS with that from the Ni-sensing histidine kinase, NrsS, resulted in the same induction characteristics as SphS. Deletion of the PAS domain resulted in the constitutive induction of AP activity regardless of P availability. To characterize the PAS domain in more in detail, four amino acid residues conserved in the PAS domain were substituted with Ala. Among the mutants R121A constitutively expressed AP activity, suggesting that R121 is important for the function of the PAS domain. Our observations indicated that the presence of a transmembrane helix in the N-terminal region of SphS is critical for activity and that the PAS domain is involved in perception of P availability.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.028514-0
2009-07-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2256.html?itemId=/content/journal/micro/10.1099/mic.0.028514-0&mimeType=html&fmt=ahah

References

  1. Aiba H., Nagaya M., Mizuno T.. 1993; Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC7942 that belong to the bacterial signal-transduction protein families: implication in the adaptive response to phosphate limitation. Mol Microbiol8:81–91
    [Google Scholar]
  2. Amann E., Brosius J.. 1985; ‘ATG vectors’ for regulated high-level expression of cloned genes in Escherichia coli. Gene40:183–190
    [Google Scholar]
  3. Baek J. H., Kang Y. J., Lee S. Y.. 2007; Transcript and protein level analyses of the interactions among PhoB, PhoR, PhoU and CreC in response to phosphate starvation in Escherichia coli. FEMS Microbiol Lett277:254–259
    [Google Scholar]
  4. Burut-Archanai S., Incharoensakdi A., Eaton-Rye J. J.. 2009; The extended N-terminal region of SphS is required for detection of external phosphate levels in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun378:383–388
    [Google Scholar]
  5. Chen E. J., Sabio E. A., Long S. R.. 2008; The periplasmic regulator ExoR inhibits ExoS/ChvI two-component signalling in Sinorhizobium meliloti. Mol Microbiol69:1290–1303
    [Google Scholar]
  6. Ehira S., Ohmori M.. 2006; NrrA directly regulates expression of hetR during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol188:8520–8525
    [Google Scholar]
  7. Finn R. D., Tate J., Mistry J., Coggill P. C., Sammut S. J., Hotz H. R., Ceric G., Forslund K., Eddy S. R.. other authors 2008; The Pfam protein families database. Nucleic Acids Res36:D281–D288
    [Google Scholar]
  8. Griff I. C., Schekman R., Rothman J. E., Kaiser C. A.. 1992; The yeast SEC17 gene product is functionally equivalent to mammalian α-SNAP protein. J Biol Chem267:12106–12115
    [Google Scholar]
  9. Hallez R., Mignolet J., van Mullem V., Wery M., Vandenhaute J., Letesson J. J., Jacobs-Wagner C., De Bolle X.. 2007; The asymmetric distribution of the essential histidine kinase PdhS indicates a differentiation event in Brucella abortus. EMBO J26:1444–1455
    [Google Scholar]
  10. Hirani T. A., Suzuki I., Murata N., Hayashi H., Eaton-Rye J. J.. 2001; Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in Synechocystis sp. PCC 6803. Plant Mol Biol45:133–144
    [Google Scholar]
  11. Juntarajumnong W., Hirani T. A., Simpson J. M., Incharoensakdi A., Eaton-Rye J. J.. 2007a; Phosphate sensing in Synechocystis sp. PCC 6803: SphU and the SphS–SphR two-component regulatory system. Arch Microbiol188:389–402
    [Google Scholar]
  12. Juntarajumnong W., Incharoensakdi A., Eaton-Rye J. J.. 2007b; Identification of the start codon for sphS encoding the phosphate-sensing histidine kinase in Synechocystis sp. PCC 6803. Curr Microbiol55:142–146
    [Google Scholar]
  13. Kaneko T., Sato S., Kotani H., Tanaka A., Asamizu E., Nakamura Y., Miyajima N., Hirosawa M., Sugiura M.. other authors 1996; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res3:109–136
    [Google Scholar]
  14. Krall L., Reed J. W.. 2000; The histidine kinase-related domain participates in phytochrome B function but is dispensable. Proc Natl Acad Sci U S A97:8169–8174
    [Google Scholar]
  15. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  16. Lopez-Maury L., Garcia-Dominguez M., Florencio F. J., Reyes J. C.. 2002; A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803. Mol Microbiol43:247–256
    [Google Scholar]
  17. Makino K., Shinagawa H., Amemura M., Kawamoto T., Yamada M., Nakata A.. 1989; Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J Mol Biol210:551–559
    [Google Scholar]
  18. Mascher T., Helmann J. D., Unden G.. 2006; Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev70:910–938
    [Google Scholar]
  19. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Murata N., Omata T.. 1988; Isolation of cyanobacterial plasma membrane. Methods Enzymol167:245–250
    [Google Scholar]
  21. Murata N., Suzuki I.. 2006; Exploitation of genomic sequences in a systematic analysis to access how cyanobacteria sense environmental stress. J Exp Bot57:235–247
    [Google Scholar]
  22. Nagaya M., Aiba H., Mizuno T.. 1993; Cloning of a sensory-kinase-encoding gene that belongs to the two-component regulatory family from the cyanobacterium Synechococcus sp. PCC7942. Gene131:119–124
    [Google Scholar]
  23. Nakata A., Amemura M., Shinagawa H.. 1984; Regulation of the phosphate regulon in Escherichia coli K-12: regulation of the negative regulatory gene phoU and identification of the gene product. J Bacteriol159:979–985
    [Google Scholar]
  24. Ortiz M. L., Calero M., Fernandez Patron C., Patron C. F., Castellanos L., Mendez E.. 1992; Imidazole-SDS-Zn reverse staining of proteins in gels containing or not SDS and microsequence of individual unmodified electroblotted proteins. FEBS Lett296:300–304
    [Google Scholar]
  25. Salinas P., Ruiz D., Cantos R., Lopez-Redondo M. L., Marina A., Contreras A.. 2007; The regulatory factor SipA provides a link between NblS and NblR signal transduction pathways in the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol66:1607–1619
    [Google Scholar]
  26. Scholten M., Tommassen J.. 1993; Topology of the PhoR protein of Escherichia coli and functional analysis of internal deletion mutants. Mol Microbiol8:269–275
    [Google Scholar]
  27. Schweitzer B., Simon M.. 1995; Growth limitation of planktonic bacteria in a large mesotrophic lake. Microb Ecol30:89–104
    [Google Scholar]
  28. Shi L., Hulett F. M.. 1999; The cytoplasmic kinase domain of PhoR is sufficient for the low phosphate-inducible expression of pho regulon genes in Bacillus subtilis. Mol Microbiol31:211–222
    [Google Scholar]
  29. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G.. 1971; Purification and properties of unicellular blue-green algae (order Chroococcales. Bacteriol Rev35:171–205
    [Google Scholar]
  30. Stock J. B., Ninfa A. J., Stock A. M.. 1989; Protein-phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev53:450–490
    [Google Scholar]
  31. Suzuki S., Ferjani A., Suzuki I., Murata N.. 2004; The SphS–SphR two component system is the exclusive sensor for the induction of gene expression in response to phosphate limitation in Synechocystis. J Biol Chem279:13234–13240
    [Google Scholar]
  32. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  33. Tsinoremas N. F., Kutach A. K., Strayer C. A., Golden S. S.. 1994; Efficient gene transfer in Synechococcus sp. strains PCC 7942 and PCC 6301 by interspecies conjugation and chromosomal recombination. J Bacteriol176:6764–6768
    [Google Scholar]
  34. Tyrrell T.. 1999; The relative influences of nitrogen and phosphorus on oceanic primary production. Nature400:525–531
    [Google Scholar]
  35. Wang H. L., Postier B. L., Burnap R. L.. 2002; Polymerase chain reaction-based mutageneses identify key transporters belonging to multigene families involved in Na+ and pH homeostasis of Synechocystis sp. PCC 6803. Mol Microbiol44:1493–1506
    [Google Scholar]
  36. Wanner B. L.. 1993; Gene regulation by phosphate in enteric bacteria. J Cell Biochem51:47–54
    [Google Scholar]
  37. Williams J. G. K.. 1988; Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol167:766–778
    [Google Scholar]
  38. Yamada M., Makino K., Shinagawa H., Nakata A.. 1990; Regulation of the phosphate regulon of Escherichia coli: properties of phoR deletion mutants and subcellular localization of PhoR protein. Mol Gen Genet220:366–372
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.028514-0
Loading
/content/journal/micro/10.1099/mic.0.028514-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error