1887

Abstract

Poly--glutamic acid (-PGA) is an extracellular polymer produced by various strains of . Ιt was first described as the component of the capsule in , where it plays a relevant role in virulence. -PGA is also a distinctive component of ‘natto’, a traditional Japanese food consisting of soybean fermented by (natto). Domesticated . strains do not synthesize -PGA although they possess the functional biosynthetic operon. In the present work we explore the correlation between the genetic determinants, and , which allow a derivative of the domestic strain JH642 to display a mucoid colony morphology on LB agar plates due to the production of -PGA. Full activation of the operon requires the co-presence of SwrAA and the phosphorylated form of DegU (DegU∼P). The presence of either DegU∼P or SwrAA alone has only marginal effects on operon transcription and -PGA production. Although SwrAA was identified as necessary for swarming and full swimming motility together with DegU, we show that motility is not involved in -PGA production. Activation of -PGA synthesis is therefore a motility-independent phenotype in which SwrAA and DegU∼P display a cooperative effect.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.026435-0
2009-07-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2282.html?itemId=/content/journal/micro/10.1099/mic.0.026435-0&mimeType=html&fmt=ahah

References

  1. Amati, G., Bisicchia, P. & Galizzi, A. ( 2004; ). DegU-P represses expression of the motility fla-che operon in Bacillus subtilis. J Bacteriol 186, 6003–6014.[CrossRef]
    [Google Scholar]
  2. Amory, A., Kunst, F., Aubert, E., Klier, A. & Rapoport, G. ( 1987; ). Characterization of the sacQ genes from Bacillus licheniformis and Bacillus subtilis. J Bacteriol 169, 324–333.
    [Google Scholar]
  3. Arnaud, M., Chastanet, A. & Débarbouillé, M. ( 2004; ). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol 70, 6887–6891.[CrossRef]
    [Google Scholar]
  4. Barilla, D., Caramori, T. & Galizzi, A. ( 1994; ). Coupling of flagellin gene transcription to flagellar assembly in Bacillus subtilis. J Bacteriol 176, 4558–4564.
    [Google Scholar]
  5. Calvio, C., Celandroni, F., Ghelardi, E., Amati, G., Salvetti, S., Ceciliani, F., Galizzi, A. & Senesi, S. ( 2005; ). Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon. J Bacteriol 187, 5356–5366.[CrossRef]
    [Google Scholar]
  6. Calvio, C., Osera, C., Amati, G. & Galizzi, A. ( 2008; ). Autoregulation of swrAA and motility in Bacillus subtilis. J Bacteriol 190, 5720–5728.[CrossRef]
    [Google Scholar]
  7. Candela, T. & Fouet, A. ( 2006; ). Poly-gamma-glutamate in bacteria. Mol Microbiol 60, 1091–1098.[CrossRef]
    [Google Scholar]
  8. Dahl, M. K., Msadek, T., Kunst, F. & Rapoport, G. ( 1992; ). The phosphorylation state of the DegU response regulator acts as a molecular switch allowing either degradative enzyme synthesis or expression of genetic competence in Bacillus subtilis. J Biol Chem 267, 14509–14514.
    [Google Scholar]
  9. Gilman, M. Z. & Chamberlin, M. J. ( 1983; ). Developmental and genetic regulation of Bacillus subtilis genes transcribed by σ 28-RNA polymerase. Cell 35, 285–293.[CrossRef]
    [Google Scholar]
  10. Kearns, D. B. & Losick, R. ( 2005; ). Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev 19, 3083–3094.[CrossRef]
    [Google Scholar]
  11. Kearns, D. B., Chu, F., Rudner, R. & Losick, R. ( 2004; ). Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol Microbiol 52, 357–369.[CrossRef]
    [Google Scholar]
  12. Kobayashi, K. ( 2007; ). Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis. Mol Microbiol 66, 395–409.[CrossRef]
    [Google Scholar]
  13. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  14. Msadek, T., Kunst, F., Henner, D., Klier, A., Rapoport, G. & Dedonder, R. ( 1990; ). Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J Bacteriol 172, 824–834.
    [Google Scholar]
  15. Schumann, W., Ehrlich, S. D. & Ogasawara, N. ( 2001; ). Functional Analysis of Bacterial Genes: a Practical Manual. Chichester: Wiley.
  16. Shih, I.-L. & Van, Y.-T. ( 2001; ). The production of poly-(gamma-glutamic acid) from microorganisms and its various applications. Bioresour Technol 79, 207–225.[CrossRef]
    [Google Scholar]
  17. Stanley, N. R. & Lazazzera, B. A. ( 2005; ). Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-dl-glutamic acid production and biofilm formation. Mol Microbiol 57, 1143–1158.[CrossRef]
    [Google Scholar]
  18. Suzuki, T. & Tahara, Y. ( 2003; ). Characterization of the Bacillus subtilis ywtD gene, whose product is involved in γ-polyglutamic acid degradation. J Bacteriol 185, 2379–2382.[CrossRef]
    [Google Scholar]
  19. Tanaka, T., Kawata, M. & Mukai, K. ( 1991; ). Altered phosphorylation of Bacillus subtilis DegU caused by single amino acid changes in DegS. J Bacteriol 173, 5507–5515.
    [Google Scholar]
  20. Urushibata, Y., Tokuyama, S. & Tahara, Y. ( 2002; ). Difference in transcription levels of cap genes for γ-polyglutamic acid production between Bacillus subtilis IFO 16449 and Marburg 168. J Biosci Bioeng 93, 252–254.[CrossRef]
    [Google Scholar]
  21. Veening, J. W., Igoshin, O. A., Eijlander, R. T., Nijland, R., Hamoen, L. W. & Kuipers, O. P. ( 2008a; ). Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol Syst Biol 4, 184
    [Google Scholar]
  22. Veening, J. W., Smits, W. K. & Kuipers, O. P. ( 2008b; ). Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62, 193–210.[CrossRef]
    [Google Scholar]
  23. Verhamme, D. T., Kiley, T. B. & Stanley-Wall, N. R. ( 2007; ). DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol Microbiol 65, 554–568.[CrossRef]
    [Google Scholar]
  24. Verhamme, D. T., Murray, E. J. & Stanley-Wall, N. R. ( 2009; ). DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis. J Bacteriol 191, 100–108.[CrossRef]
    [Google Scholar]
  25. Yang, M., Ferrari, E., Chen, E. & Henner, D. J. ( 1986; ). Identification of the pleiotropic sacQ gene of Bacillus subtilis. J Bacteriol 166, 113–119.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.026435-0
Loading
/content/journal/micro/10.1099/mic.0.026435-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error