1887

Abstract

In order to adapt to changing environments, bacteria have evolved two-component systems (TCSs) that are able to sense and respond to environmental stimuli. The signal perception relies on a sensor protein whose activation allows rapid adaptation through transcriptional regulation achieved by the regulatory protein. The ability to adhere to and grow on the surface of human host cells is an absolute requirement for many pathogens, including , in order to colonize new hosts and to disseminate inside their host. Among the four TCSs encoded in the meningococcus genome, only the PhoQ (MisS)/PhoP (MisR) system has been shown to constitute a functional signal transduction circuit. To investigate the involvement of this TCS in the adaptation process requisite for host cell colonization, we have tested the ability to grow on host cells of a mutant inactivated for the sensor of the TCS. Our results demonstrate the involvement of the TCS in the adaptation of the meningococcus to growth on host cells. We show that the expression of the PhoQ (MisS)/PhoP (MisR) TCS is cell-contact controlled. Furthermore, this TCS controls the regulation of a group of genes, the REP2 regulon, previously shown to be cell-contact regulated and to encode functions crucial for the adaptation of the bacterium to host cell colonization. Thus, we provide evidence that one of the four TCSs existing in contributes to the adaptation of the pathogen to growth on host cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027755-0
2009-07-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2288.html?itemId=/content/journal/micro/10.1099/mic.0.027755-0&mimeType=html&fmt=ahah

References

  1. Beier, D. & Gross, R. ( 2006; ). Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 9, 143–152.[CrossRef]
    [Google Scholar]
  2. Blattner, F. R., Plunkett, G., III, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K. & other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.[CrossRef]
    [Google Scholar]
  3. DiGiuseppe, P. A. & Silhavy, T. J. ( 2003; ). Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol 185, 2432–2440.[CrossRef]
    [Google Scholar]
  4. García Véscovi, E., Soncini, F. C. & Groisman, E. A. ( 1996; ). Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84, 165–174.[CrossRef]
    [Google Scholar]
  5. Geoffroy, M. C., Floquet, S., Metais, A., Nassif, X. & Pelicic, V. ( 2003; ). Large-scale analysis of the meningococcus genome by gene disruption: resistance to complement-mediated lysis. Genome Res 13, 391–398.[CrossRef]
    [Google Scholar]
  6. Goodman, A. L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R. S. & Lory, S. ( 2004; ). A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7, 745–754.[CrossRef]
    [Google Scholar]
  7. Johnson, C. R., Newcombe, J., Thorne, S., Borde, H. A., Eales-Reynolds, L. J., Gorringe, A. R., Funnell, S. G. & McFadden, J. J. ( 2001; ). Generation and characterization of a PhoP homologue mutant of Neisseria meningitidis. Mol Microbiol 39, 1345–1355.[CrossRef]
    [Google Scholar]
  8. Kellogg, D. S., Peacock, W. L., Deacon, W. E., Brown, L. & Pirkle, C. I. ( 1963; ). Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation. J Bacteriol 85, 1274–1279.
    [Google Scholar]
  9. Kulasekara, H. D., Ventre, I., Kulasekara, B. R., Lazdunski, A., Filloux, A. & Lory, S. ( 2005; ). A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol Microbiol 55, 368–380.
    [Google Scholar]
  10. Laub, M. T. & Goulian, M. ( 2007; ). Specificity in two-component signal transduction pathways. Annu Rev Genet 41, 121–145.[CrossRef]
    [Google Scholar]
  11. Lejona, S., Castelli, M. E., Cabeza, M. L., Kenney, L. J., García Véscovi, E. & Soncini, F. C. ( 2004; ). PhoP can activate its target genes in a PhoQ-independent manner. J Bacteriol 186, 2476–2480.[CrossRef]
    [Google Scholar]
  12. Liang, X., Yu, C., Sun, J., Liu, H., Landwehr, C., Holmes, D. & Ji, Y. ( 2006; ). Inactivation of a two-component signal transduction system, SaeRS, eliminates adherence and attenuates virulence of Staphylococcus aureus. Infect Immun 74, 4655–4665.[CrossRef]
    [Google Scholar]
  13. Miller, S. I. & Mekalanos, J. J. ( 1990; ). Constitutive expression of the phoP regulon attenuates Salmonella virulence and survival within macrophages. J Bacteriol 172, 2485–2490.
    [Google Scholar]
  14. Miyashiro, T. & Goulian, M. ( 2007; ). Stimulus-dependent differential regulation in the Escherichia coli PhoQ PhoP system. Proc Natl Acad Sci U S A 104, 16305–16310.[CrossRef]
    [Google Scholar]
  15. Morelle, S., Carbonnelle, E. & Nassif, X. ( 2003; ). The REP2 repeats of the genome of Neisseria meningitidis are associated with genes coordinately regulated during bacterial cell interaction. J Bacteriol 185, 2618–2627.[CrossRef]
    [Google Scholar]
  16. Morelle, S., Carbonnelle, E., Matic, I. & Nassif, X. ( 2005; ). Contact with host cells induces a DNA repair system in pathogenic neisseriae. Mol Microbiol 55, 853–861.
    [Google Scholar]
  17. Munson, G. P. & Scott, J. R. ( 2000; ). Rns, a virulence regulator within the AraC family, requires binding sites upstream and downstream of its own promoter to function as an activator. Mol Microbiol 36, 1391–1402.
    [Google Scholar]
  18. Nassif, X., Lowy, J., Stenberg, P., O'Gaora, P., Ganji, A. & So, M. ( 1993; ). Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol Microbiol 8, 719–725.[CrossRef]
    [Google Scholar]
  19. Newcombe, J., Eales-Reynolds, L., Wootton, L., Gorringe, A. R., Funnell, S. G., Taylor, S. C. & McFadden, J. J. ( 2004; ). Infection with an avirulent phoP mutant of Neisseria meningitidis confers broad cross-reactive immunity. Infect Immun 72, 338–344.[CrossRef]
    [Google Scholar]
  20. Newcombe, J., Jeynes, J. C., Mendoza, E., Hinds, J., Marsden, G. L., Stabler, R. A., Marti, M. & McFadden, J. J. ( 2005; ). Phenotypic and transcriptional characterization of the meningococcal PhoPQ system, a magnesium-sensing two-component regulatory system that controls genes involved in remodeling the meningococcal cell surface. J Bacteriol 187, 4967–4975.[CrossRef]
    [Google Scholar]
  21. Oshima, T., Aiba, H., Masuda, Y., Kanaya, S., Sugiura, M., Wanner, B. L., Mori, H. & Mizuno, T. ( 2002; ). Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46, 281–291.[CrossRef]
    [Google Scholar]
  22. Otto, K. & Silhavy, T. J. ( 2002; ). Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci U S A 99, 2287–2292.[CrossRef]
    [Google Scholar]
  23. Parkhill, J., Achtman, M., James, K. D., Bentley, S. D., Churcher, C., Klee, S. R., Morelli, G., Basham, D., Brown, D. & other authors ( 2000; ). Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–506.[CrossRef]
    [Google Scholar]
  24. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  25. Sebastian, S., Agarwal, S., Murphy, J. R. & Genco, C. A. ( 2002; ). The gonococcal fur regulon: identification of additional genes involved in major catabolic, recombination, and secretory pathways. J Bacteriol 184, 3965–3974.[CrossRef]
    [Google Scholar]
  26. Shi, Y., Latifi, T., Cromie, M. J. & Groisman, E. A. ( 2004; ). Transcriptional control of the antimicrobial peptide resistance ugtL gene by the Salmonella PhoP and SlyA regulatory proteins. J Biol Chem 279, 38618–38625.[CrossRef]
    [Google Scholar]
  27. Shin, D., Lee, E. J., Huang, H. & Groisman, E. A. ( 2006; ). A positive feedback loop promotes transcription surge that jump-starts Salmonella virulence circuit. Science 314, 1607–1609.[CrossRef]
    [Google Scholar]
  28. Stephens, D. S., Greenwood, B. & Brandtzaeg, P. ( 2007; ). Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369, 2196–2210.[CrossRef]
    [Google Scholar]
  29. Taha, M. K., Morand, P., Pereira, Y., Eugene, E., Giorgini, D., Larribe, M. & Nassif, X. ( 1998; ). Pilus-mediated adhesion of Neisseria meningitidis: the essential role of cell contact-dependent transcriptional upregulation of the PilC1 protein. Mol Microbiol 28, 1153–1163.[CrossRef]
    [Google Scholar]
  30. Tettelin, H., Saunders, N. J., Heidelberg, J., Jeffries, A. C., Nelson, K. E., Eisen, J. A., Ketchum, K. A., Hood, D. W., Peden, J. F. & other authors ( 2000; ). Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815.[CrossRef]
    [Google Scholar]
  31. Tzeng, Y. L., Datta, A., Ambrose, K., Lo, M., Davies, J. K., Carlson, R. W., Stephens, D. S. & Kahler, C. M. ( 2004; ). The MisR/MisS two-component regulatory system influences inner core structure and immunotype of lipooligosaccharide in Neisseria meningitidis. J Biol Chem 279, 35053–35062.[CrossRef]
    [Google Scholar]
  32. Tzeng, Y. L., Zhou, X., Bao, S., Zhao, S., Noble, C. & Stephens, D. S. ( 2006; ). Autoregulation of the MisR/MisS two-component signal transduction system in Neisseria meningitidis. J Bacteriol 188, 5055–5065.[CrossRef]
    [Google Scholar]
  33. Tzeng, Y. L., Khaler, C., Zhang, X. & Stephens, D. S. ( 2008; ). The MisR/MisS two-component regulon in Neisseria meningitidis. Infect Immun 76, 704–716.[CrossRef]
    [Google Scholar]
  34. Wosten, M. M., Parker, C. T., van Mourik, A., Guilhabert, M. R., van Dijk, L. & van Putten, J. P. ( 2006; ). The Campylobacter jejuni PhosS/PhosR operon represents a non-classical phosphate-sensitive two-component system. Mol Microbiol 62, 278–291.[CrossRef]
    [Google Scholar]
  35. Yasukawa, K., Martin, P., Tinsley, C. R. & Nassif, X. ( 2006; ). Pilus-mediated adhesion of Neisseria meningitidis is negatively controlled by the pilus-retraction machinery. Mol Microbiol 59, 579–589.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027755-0
Loading
/content/journal/micro/10.1099/mic.0.027755-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error