1887

Abstract

-Glucosidase I regulates trimming of the terminal -1,2-glucose residue in the -glycan processing pathway, which plays an important role in quality control systems in mammalian cells. Previously, we identified the gene encoding -glucosidase I in the opportunistic human fungal pathogen , namely Af. Deletion of the Af gene results in a severe reduction of conidia formation, a temperature-sensitive deficiency of cell wall integrity, and abnormalities of polar growth and septation. An upregulation of the genes encoding Rho-type GTPases was also observed, which suggests activation of the cell wall integrity pathway in the mutant. Using 2D gel analysis, we revealed that the proteins involved in protein assembly, ubiquitin-mediated degradation and actin organization are altered in the ΔAf mutant. Evidence was obtained for a defect in the polarized localization of the actin cytoskeleton in the mutant. Our results suggest that blocking of the glucose trimming in might induce accumulation of misfolded proteins in the endoplasmic reticulum; these misfolded proteins are probably required for cell wall synthesis and thus activate the cell wall integrity pathway, which then causes the abnormal polarity associated with the ΔAf mutant.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.027490-0
2009-07-01
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2157.html?itemId=/content/journal/micro/10.1099/mic.0.027490-0&mimeType=html&fmt=ahah

References

  1. Abeijon C., Chen L. Y.. 1998; The role of glucosidase I (Cwh41p) in the biosynthesis of cell wall β-1,6-glucan is indirect. Mol Biol Cell9:2729–2738
    [Google Scholar]
  2. Back S. H., Schroder M., Lee K., Zhang K., Kaufman R. J.. 2005; ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods35:395–416
    [Google Scholar]
  3. Banerjee S., Vishwanath P., Cui J., Kelleher D. J., Gilmore R., Robbins P. W., Samuelson J.. 2007; The evolution of N-glycan-dependent endoplasmic reticulum quality control factors for glycoprotein folding and degradation. Proc Natl Acad Sci U S A104:11676–11681
    [Google Scholar]
  4. Bruneau J.-M., Magnin T., Tagat E., Legrand R., Bernard M., Diaquin M., Fudali C., Latgé J.-P.. 2001; Proteome analysis of Aspergillus fumigatus identifies glycosylphosphatidylinositol-anchored proteins associated to the cell wall biosynthesis. Electrophoresis22:2812–2823
    [Google Scholar]
  5. Chabane S., Sarfati J., Ibrahim-Granet O., Du C., Schimidt C., Mouyna I., Prevost M.-C., Calderone R., Latgé J.-P.. 2006; Glycosylphosphatidylinositol-anchored Ecm33p influences conidial cell wall biosynthesis in Aspergillus fumigatus. Appl Environ Microbiol72:3259–3267
    [Google Scholar]
  6. Cove D. J.. 1966; The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta113:51–56
    [Google Scholar]
  7. Craven R. A., Egerton M., Stirling C. J.. 1996; A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors. EMBO J15:2640–2650
    [Google Scholar]
  8. de Groot P. W., Ram A. F., Klis F. M.. 2005; Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol42:657–675
    [Google Scholar]
  9. Esnault K., el Moudni B., Bouchara J.-P., Chabasse D., Tronchin G.. 1999; Association of a myosin immunoanalogue with cell envelopes of Aspergillus fumigatus conidia and its participation in swelling and germination. Infect Immun67:1238–1244
    [Google Scholar]
  10. Fagarasanu M., Fagarasanu A., Rachubinski R. A.. 2006; Sharing the wealth: prooxisome inheritance in budding yeast. Biochim Biophys Acta 1763;1669–1677
    [Google Scholar]
  11. Galagan J. E., Calvo S. E., Cuomo C., Ma L. J., Wortman J. R., Batzoglou S., Lee S. I., Baştürkmen M., Spevak C. C.. other authors 2005; Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature438:1105–1115
    [Google Scholar]
  12. Gharahdaghi F., Weinberg C. R., Meagher D. A., Imai B. S., Mische S. M.. 1999; Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis20:601–615
    [Google Scholar]
  13. Glickman M. H., Rubin D. M., Fried V. A., Finley D.. 1998; The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol18:3149–3162
    [Google Scholar]
  14. Gray J. V., Ogas J. P., Kamada Y., Stone M., Levin D. E., Herskowitz I.. 1997; A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J16:4924–4937
    [Google Scholar]
  15. Guest G. M., Lin X., Momany M.. 2004; Aspergillus nidulans RhoA is involved in polar growth, branching, and cell wall synthesis. Fungal Genet Biol41:13–22
    [Google Scholar]
  16. Hammond C., Braakman I., Helenius A.. 1994; Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A91:913–917
    [Google Scholar]
  17. Heath I. B., Gupta G., Bai S.. 2000; Plasma membrane-adjacent actin filaments, but not microtubules, are essential for both polarization and hyphal tip morphogenesis in Saprolegnia ferax and Neurospora crassa. Fungal Genet Biol30:45–62
    [Google Scholar]
  18. Helenius A., Aebi M.. 2004; Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem73:1019–1049
    [Google Scholar]
  19. Hutzler F., Gerstl R., Lommel M., Strahl S.. 2008; Protein N-glycosylation determines functionality of the Saccharomyces cerevisiae cell wall integrity sensor Mid2p. Mol Microbiol68:1438–1449
    [Google Scholar]
  20. Jacoby J. J., Nilius S. M., Heinisch J. J.. 1998; A screen for upstream components of the yeast protein kinase C signal transduction pathway identifies the product of the SLG1 gene. Mol Gen Genet258:148–155
    [Google Scholar]
  21. Jakob C. A., Burda P., Roth J., Aebi M.. 1998; Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol142:1223–1233
    [Google Scholar]
  22. Jiang B., Sheraton J., Ram A. F. J., Dijkgraaf G. J. P., Klis F. M., Bussey H.. 1996; CWH41 encodes a novel endoplasmic reticulum membrane N-glycoprotein involved in β1,6-glucan assembly. J Bacteriol178:1162–1171
    [Google Scholar]
  23. Johnson D. I.. 1999; Cdc42: an essential rho-type GTPase controlling eukaryotic cell polarity. Microbiol Mol Biol Rev63:54–105
    [Google Scholar]
  24. Johnson D. I., Pringle J.. 1990; Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J Cell Biol111:143–152
    [Google Scholar]
  25. Ketela T., Green R., Bussey H.. 1999; Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1–MPK1 cell integrity pathway. J Bacteriol181:3330–3340
    [Google Scholar]
  26. Kingo K., Philips M.-A., Aunin E., Luuk H., Karelson M., Rätsep R., Silm H.. 2006; MYG1, novel melanocyte related gene, has elevated expression in vitiligo. J Dermatol Sci44:119–122
    [Google Scholar]
  27. Kniemeyer O., Lessing F., Scheibner O., Hertweck C., Brakhage A. A.. 2006; Optimisation of a 2-D gel electrophoresis protocol for the human pathogenic fungus Aspergillus fumigatus. Curr Genet49:178–189
    [Google Scholar]
  28. Krappmann S.. 2006; Tools to study molecular mechanisms of Aspergillus pathogenicity. Trends Microbiol14:356–364
    [Google Scholar]
  29. Latgé J.-P.. 1999; Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev12:310–350
    [Google Scholar]
  30. Latgé J.-P.. 2001; The pathobiology of Aspergillus fumigatus. Trends Microbiol9:382–389
    [Google Scholar]
  31. Latgé J.-P.. 2007; The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol66:279–290
    [Google Scholar]
  32. Levin D. E.. 2005; Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev69:262–291
    [Google Scholar]
  33. Li F., Sun W., Gao Y., Wang J.. 2004; RScore: a peptide randomicity score for evaluating tandem mass spectra. Rapid Commun Mass Spectrom18:1655–1659
    [Google Scholar]
  34. Li H., Zhou H., Luo Y., Ouyang H., Hu H., Jin C.. 2007; Glycosylphosphatidylinositol (GPI) anchor is required in Aspergillus fumigatus for morphogenesis and virulence. Mol Microbiol64:1014–1027
    [Google Scholar]
  35. Lommel M., Bagnat M., Strahl S.. 2004; Aberrant processing of the WSC family and Mid2p cell surface sensors results in death of Saccharomyces cerevisiae O-mannosylation mutants. Mol Cell Biol24:46–57
    [Google Scholar]
  36. Longtine M. S., Bi E.. 2003; Regulation of septin organization and function in yeast. Trends Cell Biol13:403–409
    [Google Scholar]
  37. Mallik R., Gross S. P.. 2004; Molecular motors: strategies to get along. Curr Biol14:R971–R982
    [Google Scholar]
  38. Matsui Y., Toh-e A.. 1992; Yeast RHO3 and RHO4 ras superfamily genes are necessary for bud growth, and their defect is suppressed by a high dose of bud formation genes CDC42 and BEM1. Mol Cell Biol12:5690–5699
    [Google Scholar]
  39. Melin P., Schnürer J., Wagner E. G. H.. 2002; Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species. Mol Genet Genomics267:695–702
    [Google Scholar]
  40. Mesaeli N., Nakamura K., Zvaritch E., Dickie P., Dziak E., Krause K. H., Opas M., MacLennan D. H., Michalak M.. 1999; Calreticulin is essential for cardiac development. J Cell Biol144:857–868
    [Google Scholar]
  41. Mouyna I., Fontaine T., Vai M., Monod M., Fonzi W. A., Diaquin M., Popolo L., Hartland R. P., Latgé J.-P.. 2000; Glycosylphosphatidylinositol-anchored glucanosyltransferases play an active role in the biosynthesis of the fungal cell wall. J Biol Chem275:14882–14889
    [Google Scholar]
  42. Mouyna I., Morelle W., Vai M., Monod M., Lechenne B., Fontaine T., Beauvais A., Sarfati J., Prevost M.-C.. other authors 2005; Deletion of GEL2 encoding for a β(1–3)glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus. Mol Microbiol56:1675–1688
    [Google Scholar]
  43. Oda K., Kakizono D., Yamada O., Iefuji H., Akita O., Iwashita K.. 2006; Proteomic analysis of extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol72:3448–3457
    [Google Scholar]
  44. Parodi A. J.. 2000; Protein glucosylation and its role in protein folding. Annu Rev Biochem69:69–93
    [Google Scholar]
  45. Philip B., Levin D. E.. 2001; Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol21:271–280
    [Google Scholar]
  46. Quintyne N. J., Gill S. R., Eckley D. M., Crego C. L., Compton D. A., Schroer T. A.. 1999; Dynactin is required for microtubule anchoring at centrosomes. J Cell Biol147:321–334
    [Google Scholar]
  47. Rajavel M., Philip B., Buehrer B. M., Errede B., Levin D. E.. 1999; Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol Cell Biol19:3969–3976
    [Google Scholar]
  48. Ram A. F., Wolters A., Ten Hoopen R., Klis F. M.. 1994; A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast10:1019–1030
    [Google Scholar]
  49. Romano J., Nimrod G., Ben-Tal N., Shadkchan Y., Baruch K., Sharon H., Osherov N.. 2006; Disruption of the Aspergillus fumigatus ECM33 homologue results in rapid conidial germination, antifungal resistance and hypervirulence. Microbiology152:1919–1928
    [Google Scholar]
  50. Romero P. A., Dijkgraaf G. J. P., Shahinian S., Herscovics A., Bussey H.. 1997; The yeast CWH41 gene encodes glucosidase. Glycobiology7:997–1004
    [Google Scholar]
  51. Ruddock L. W., Molinari M.. 2006; N-Glycan processing in ER quality control. J Cell Sci119:4373–4380
    [Google Scholar]
  52. Steinbach W. J., Stevens D. A., Denning D. W.. 2003; Combination and sequential antifungal therapy for invasive aspergillosis: review of published in vitro and in vivo interactions and 6281 clinical cases from 1966 to 2001. Clin Infect Dis37:S188–S224
    [Google Scholar]
  53. Sun W., Li F., Wang J., Zheng D., Gao Y.. 2004; AMASS: software for automatically validating the quality of MS/MS spectrum from SEQUEST results. Mol Cell Proteomics3:1194–1199
    [Google Scholar]
  54. Verna J., Lodder A., Lee K., Vagts A., Ballester R.. 1997; A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A94:13804–13809
    [Google Scholar]
  55. Walther A., Wendland J.. 2003; Septation and cytokinesis in fungi. Fungal Genet Biol40:187–196
    [Google Scholar]
  56. Weerapana E., Imperiali B.. 2006; Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology16:91R–101R
    [Google Scholar]
  57. Xia G., Jin C., Zhou J., Yang S., Zhang S., Jin C.. 2001; A novel chitinase having a unique mode of action from Aspergillus fumigatus YJ-407. Eur J Biochem268:4079–4085
    [Google Scholar]
  58. Zhang L., Zhou H., Ouyang H., Li Y., Jin C.. 2008; Glucose-trimming of N-glycan is required for cell wall synthesis, conidiation, and polarity in Aspergillus fumigatus. FEMS Microbiol Lett289:155–166
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.027490-0
Loading
/content/journal/micro/10.1099/mic.0.027490-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error