-
Volume 152,
Issue 6,
2006
Volume 152, Issue 6, 2006
- Mini-Review
-
-
-
Bacterial glycoproteomics
More LessGlycosylated proteins are ubiquitous components of eukaryote cellular surfaces, where the glycan moieties are implicated in a wide range of cell–cell recognition events. Once thought to be restricted to eukaryotes, glycosylation is now being increasingly reported in prokaryotes. Many of these discoveries have grown from advances in analytical technologies and genome sequencing. This review highlights the capabilities of high-sensitivity mass spectrometry for carbohydrate structure determination of bacterial glycoproteins and the emergence of glycoproteomic strategies that have evolved from proteomics and genomics for the functional analysis of bacterial glycosylation.
-
-
- Biochemistry And Molecular Biology
-
-
-
The kfrA gene is the first in a tricistronic operon required for survival of IncP-1 plasmid R751
The kfrA gene of the IncP-1 broad-host-range plasmids is the best-studied member of a growing gene family that shows strong linkage to the minimal replicon of many low-copy-number plasmids. KfrA is a DNA binding protein with a long, alpha-helical, coiled-coil tail. Studying IncP-1β plasmid R751, evidence is presented that kfrA and its downstream genes upf54.8 and upf54.4 were organized in a tricistronic operon (renamed here kfrA kfrB kfrC), expressed from autoregulated kfrAp, that was also repressed by KorA and KorB. KfrA, KfrB and KfrC interacted and may have formed a multi-protein complex. Inactivation of either kfrA or kfrB in R751 resulted in long-term accumulation of plasmid-negative bacteria, whereas wild-type R751 itself persisted without selection. Immunofluorescence studies showed that KfrAR751 formed plasmid-associated foci, and deletion of the C terminus of KfrA caused plasmid R751ΔC 2 kfrA foci to disperse and mislocalize. Thus, the KfrABC complex may be an important component in the organization and control of the plasmid clusters that seem to form the segregating unit in bacterial cells. The studied operon is therefore part of the set of functions needed for R751 to function as an efficient vehicle for maintenance and spread of genes in Gram-negative bacteria.
-
-
-
-
The channel-tunnel HI1462 of Haemophilus influenzae reveals differences to Escherichia coli TolC
More LessEfflux pumps play a major role in multidrug resistance of pathogenic bacteria. The TolC homologue HI1462 was identified as the single channel-tunnel in Haemophilus influenzae required to form a functional multidrug efflux pump. The outer-membrane protein was expressed in Escherichia coli, purified and reconstituted in black lipid membranes. It exhibited a comparatively small single-channel conductance of 43 pS in 1 M KCl and is the first known TolC homologue which is anion-selective. The HI1462 structure was modelled and an arginine residue lining the tunnel entrance was identified. The channel-tunnel of a mutant with the arginine substituted by an alanine residue was cation-selective and had a sevenfold higher single-channel conductance compared to wild-type. These results confirm that the arginine is responsible for anion selectivity and forms a salt bridge with a glutamate residue of the adjacent monomer, establishing a circular network, which keeps the tunnel entrance in a tightly closed conformation. In in vivo experiments, both the wild-type HI1462 and the mutant were able to substitute for E. coli TolC in the haemolysin secretion system, but not in the AcrAB/TolC multidrug efflux pump. The structure–function relationship of HI1462 is discussed in the context of the well-studied TolC channel-tunnel of E. coli.
-
-
-
Analysis of tryptic digests indicates regions of GvpC that bind to gas vesicles of Anabaena flos-aquae
More LessThe gas vesicles of the cyanobacterium Anabaena flos-aquae contain two main proteins: GvpA, which forms the ribs of the hollow cylindrical shell, and GvpC, which occurs on the outer surface. Analysis by MALDI-TOF MS shows that after incubating Anabaena gas vesicles in trypsin, GvpA was cleaved only at sites near the N-terminus, whereas GvpC was cleaved at most of its potential tryptic sites. Many of the resulting tryptic peptides from GvpC remained attached to the underlying GvpA shell: the pattern of attachment indicated that there are binding sites to GvpA at both ends of the 33-residue repeats (33RRs) in GvpC, although one of the tryptic peptides within the 33RR did not remain attached. Tryptic peptides near the two ends of the GvpC molecule were also lost. The mean critical collapse pressure of Anabaena gas vesicles decreased from 0.63 MPa to 0.20 MPa when GvpC was removed with urea or fully digested with trypsin; partial digestion resulted in partial decrease in critical pressure.
-
-
-
The catalase and superoxide dismutase genes are transcriptionally up-regulated upon oxidative stress in the strictly anaerobic archaeon Methanosarcina barkeri
More LessMethanosarcina barkeri is a strictly anaerobic methanogenic archaeon, which can survive oxidative stress. The oxidative stress agent paraquat (PQ) suppressed growth of M. barkeri at concentrations of 50–200 μM. Hydrogen peroxide (H2O2) inhibited growth at concentrations of 0.4–1.6 mM. Catalase activity in cell-free extracts of M. barkeri increased about threefold during H2O2 stress (1.3 mM H2O2, 2–4 h exposure) and nearly twofold during superoxide stress (160 μM PQ, 2 h exposure). PQ (160 μM, 2–4 h exposure) and H2O2 (1.3 mM, 2 h exposure) also influenced superoxide dismutase activity in cell-free extracts of M. barkeri. Dot-blot analysis was performed on total RNA isolated from H2O2- and PQ-exposed cultures, using labelled internal DNA fragments of the sod and kat genes. It was shown that H2O2 but not PQ strongly induced up-regulation of the kat gene. PQ and to a lesser degree H2O2 induced the expression of superoxide dismutase. The results indicate the regulation of the adaptive response of M. barkeri to different oxidative stresses.
-
-
-
Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry
More LessThe LysR-type transcriptional regulator MvfR (PqsR) (multiple virulence factor regulator) plays a critical role in Pseudomonas aeruginosa pathogenicity via the transcriptional regulation of multiple quorum-sensing (QS)-regulated virulence factors. LasR activates full mvfR transcription, and MvfR subsequently activates pqsA–E expression. This study identifies and characterizes the key cis-regulatory elements through which mvfR and pqsA–E transcription is regulated in the highly virulent P. aeruginosa strain PA14. Deletion and site-directed mutagenesis indicate that: (1) LasR activates mvfR transcription by binding to a las/rhl box, CTAACAAAAGACATAG, centred at −513 bp upstream of the MvfR translational start site; and (2) RhlR represses pqsA transcription by binding to a las/rhl box, CTGTGAGATTTGGGAG, centred at −311 bp upstream of the pqsA transcriptional initiation site. Furthermore, it is shown that MvfR activates pqsA–E transcription by binding to a LysR box, TTCGGACTCCGAA, centred at −45 bp relative to the pqsA transcriptional initiation site, demonstrating that this LysR box has a critical role in the physical interaction between the MvfR protein and the pqsA promoter. These results provide new insights into the regulatory relationships between LasR and mvfR, and between MvfR/RhlR and the pqs operon, and elucidate further the complex regulation of the P. aeruginosa QS circuitry.
-
-
-
ThHog1 controls the hyperosmotic stress response in Trichoderma harzianum
More LessTrichoderma harzianum is a widespread mycoparasitic fungus, able to successfully colonize a wide range of substrates under different environmental conditions. Transcript profiling revealed a subset of genes induced in T. harzianum under hyperosmotic shock. The hog1 gene, a homologue of the MAPK HOG1 gene that controls the hyperosmotic stress response in Saccharomyces cerevisiae, was characterized. T. harzianum hog1 complemented the hog1Δ mutation in S. cerevisiae, but showed different features to yeast alleles: improved osmoresistance by expression of the hog1 allele and a lack of lethality when the hog1 F315S allele was overexpressed. ThHog1 protein was phosphorylated in T. harzianum under different stress conditions such as hyperosmotic or oxidative stress, among others. By using a ThHog1-GFP fusion, the protein was shown to be localized in nuclei under these stress conditions. Two mutant strains of T. harzianum were constructed: one carrying the hog1 F315S allele, and a knockdown hog1-silenced strain. The silenced strain was highly sensitive to osmotic stress, and showed intermediate levels of resistance against oxidative stress, indicating that the main role of ThHog1 protein is in the hyperosmotic stress response. Stress cross-resistance experiments showed evidences of a secondary role of ThHog1 in oxidative stress. The strain carrying the hog1 F315S allele was highly resistant to the calcineurin inhibitor cyclosporin A, which suggests the existence of links between the two pathways. The two mutant strains showed a strongly reduced antagonistic activity against the plant pathogens Phoma betae and Colletotrichum acutatum, which points to a role of ThHog1 protein in fungus–fungus interactions.
-
-
-
A generalized transducing phage (ϕIF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen
More LessA bacteriophage (ϕIF3) capable of mediating generalized transduction in Serratia marcescens strain Db11 has been isolated and characterized. The genome of this Serratia strain has recently been sequenced and is likely to become the reference strain for S. marcescens researchers. ϕIF3 is most likely a virulent phage, which can transduce markers at frequencies of 10−6 transductants per p.f.u. It has a lipopolysaccharide receptor and was determined to have a latent period of 50 min and a burst size of approximately 100 phages. The phage DNA was resistant to digestion with restriction enzymes. Electron microscopy showed ϕIF3 to be a member of the family Myoviridae. This is the first report of a generalized transducing phage able to infect Db11 and this phage will be a valuable tool for functional genomic analysis of the pathogen host.
-
-
-
Poly(glucosyl-N-acetylgalactosamine 1-phosphate), a wall teichoic acid of Bacillus subtilis 168: its biosynthetic pathway and mode of attachment to peptidoglycan
More LessThe ggaAB operon of Bacillus subtilis 168 encodes enzymes responsible for the synthesis of poly(glucosyl N-acetylgalactosamine 1-phosphate) [poly(GlcGalNAc 1-P)], a wall teichoic acid (WTA). Analysis of the nucleotide sequence revealed that both GgaA and GgaB contained the motif characteristic of sugar transferases, while GgaB was most likely to be bifunctional, being endowed with an additional motif present in glucosyl/glycerophosphate transferases. Transcription of the operon was thermosensitive, and took place from an unusually distant σ A-controlled promoter. The incorporation of the poly(GlcGalNAc 1-P) precursors by various mutants deficient in the synthesis of poly(glycerol phosphate), which is the most abundant WTA of strain 168, revealed that both WTAs were most likely to be attached to peptidoglycan (PG) through the same linkage unit (LU). The incorporation of poly(GlcGalNAc 1-P) precursors by protoplasts confirmed the existence of this LU, and provided further evidence that incorporation takes place at the outer surface of the protoplast membrane. The data presented here strengthen the view that biosynthesis of the LU, and the hooking of the LU-endowed polymer to PG, offer distinct widespread targets for antibiotics specific to Gram-positive bacteria.
-
- Environmental Microbiology
-
-
-
Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS)
More LessThe effectiveness of solar disinfection (SODIS), a low-cost household water treatment method for developing countries, was investigated with flow cytometry and viability stains for the enteric bacterium Escherichia coli. A better understanding of the process of injury or death of E. coli during SODIS could be gained by investigating six different cellular functions, namely: efflux pump activity (Syto 9 plus ethidium bromide), membrane potential [bis-(1,3-dibutylbarbituric acid)trimethine oxonol; DiBAC4(3)], membrane integrity (LIVE/DEAD BacLight), glucose uptake activity (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose; 2-NBDG), total ATP concentration (BacTiter-Glo) and culturability (pour-plate method). These variables were measured in E. coli K-12 MG1655 cells that were exposed to either sunlight or artificial UVA light. The inactivation pattern of cellular functions was very similar for both light sources. A UVA light dose (fluence) of <500 kJ m−2 was enough to lower the proton motive force, such that efflux pump activity and ATP synthesis decreased significantly. The loss of membrane potential, glucose uptake activity and culturability of >80 % of the cells was observed at a fluence of ∼1500 kJ m−2, and the cytoplasmic membrane of bacterial cells became permeable at a fluence of >2500 kJ m−2. Culturable counts of stressed bacteria after anaerobic incubation on sodium pyruvate-supplemented tryptic soy agar closely correlated with the loss of membrane potential. The results strongly suggest that cells exposed to >1500 kJ m−2 solar UVA (corresponding to 530 W m−2 global sunlight intensity for 6 h) were no longer able to repair the damage and recover. Our study confirms the lethal effect of SODIS with cultivation-independent methods and gives a detailed picture of the ‘agony’ of E. coli when it is stressed with sunlight.
-
-
-
-
Fungal colonization of soil-buried plasticized polyvinyl chloride (pPVC) and the impact of incorporated biocides
More LessPlasticized polyvinyl chloride (pPVC) with or without incorporated biocides was buried in grassland and forest soil for up to 10 months. The change with time in viable counts of fungi on the plastic surface was followed, together with the percentage capable of clearing the two plasticizers dioctyl adipate (DOA) and dioctyl phthalate (DOP). With time fungal total viable counts (TVC) on control pPVC increased and the fraction able to clear DOA was considerably higher than the average estimated in both soil types. A total of 92 fungal morphotypes were isolated from grassland soil and 42 from forest soil with the greatest variety of fungal isolates observed on control pPVC. The incorporation of biocides into pPVC affected both fungal TVC and the richness of species isolated. The biocides NCMP [n-(trichloromethylthio)phthalimide], OBPA (10,10′-oxybisphenoxarsine) and OIT (2-n-octyl-4-isothiazolin-3-one) were the most effective in grassland soil, and TCMP [2,3,5,6-tetrachloro-4-(methylsulphonyl)pyridine] and NCMP the most effective in forest soil. In grassland soil, Penicillium janthinellum established as a principal colonizer and was recovered from all pPVC types. DOP clearers were found at much lower levels than DOA clearers, with Doratomyces spp. being the most efficient. At the end of 10 months the physical properties of the pPVC were altered; changes in stiffness were the most significant for heavily colonized grassland-buried pPVC samples, whereas in forest soil, the extensibility of the pPVC was affected more than the stiffness. These results suggest that fungi are important colonizers of pPVC buried in soil and that enrichment of soil fungi capable of clearing DOA occurs during colonization of the plastic surface. The results also demonstrate that incorporated biocides have a marked impact on the richness of species colonizing the pPVC surface.
-
-
-
Deletion of the rpoZ gene, encoding the ω subunit of RNA polymerase, results in pleiotropic surface-related phenotypes in Mycobacterium smegmatis
More LessThe ω subunit, the smallest subunit of bacterial RNA polymerase, is known to be involved in maintaining the conformation of the β′ subunit and aiding its recruitment to the rest of the core enzyme assembly in Escherichia coli. It has recently been shown in Mycobacterium smegmatis, by creating a deletion mutation of the rpoZ gene encoding ω, that the physiological role of the ω subunit also includes providing physical protection to β′. Interestingly, the mutant had altered colony morphology. This paper demonstrates that the mutant mycobacterium has pleiotropic phenotypes including reduced sliding motility and defective biofilm formation. Analysis of the spatial arrangement of biofilms by electron microscopy suggests that the altered phenotype of the mutant arises from a deficiency in generation of extracellular matrix. Complementation of the mutant strain with a copy of the wild-type rpoZ gene integrated in the bacterial chromosome restored both sliding motility and biofilm formation to the wild-type state, unequivocally proving the role of ω in the characteristics observed for the mutant bacterium. Analysis of the cell wall composition demonstrated that the mutant bacterium had an identical glycopeptidolipid profile to the wild-type, but failed to synthesize the short-chain mycolic acids characteristic of biofilm growth in M. smegmatis.
-
- Genes And Genomes
-
-
-
Data mining and characterization of a novel pediocin-like bacteriocin system from the genome of Pediococcus pentosaceus ATCC 25745
More LessThe genome of Pediococcus pentosaceus ATCC 25745 contains a gene cluster that resembles a regulated bacteriocin system. The gene cluster has an operon-like structure consisting of a putative pediocin-like bacteriocin gene (termed penA) and a potential immunity gene (termed peiA). Genetic determinants involved in bacteriocin transport and regulation are also found in proximity to penA and peiA but the so-called accessory gene involved in transport and the inducer gene involved in regulation are missing. Consequently, this bacterium is a poor bacteriocin producer. To analyse the potency of the putative bacteriocin operon, the two genes penA-peiA were heterologously expressed in a Lactobacillus sakei host that contains the complete apparatus for gene activation, maturation and externalization of bacteriocins. It was demonstrated that the heterologous host expressing penA and peiA produced a strong bacteriocin activity; in addition, the host became immune to its own bacteriocin, identifying the gene pair penA-peiA as a potent bacteriocin system. The novel pediocin-like bacteriocin, termed penocin A, has an isotopic mass [M+H]+ of 4684.6 Da as determined by mass spectrometry; this value corresponds well to the expected size of the mature 42 aa peptide containing a disulfide bridge. The bacteriocin is heat-stable but protease-sensitive and has a calculated pI of 9.45. Penocin A has a relatively broad inhibition spectrum, including pathogenic Listeria and Clostridium species. Immediately upstream of the regulatory genes reside some features that resemble remnants of a disrupted inducer gene. This degenerate gene was restored and shown to encode a double-glycine leader-containing peptide. Furthermore, expression of the restored gene triggered high bacteriocin production in P. pentosaceus ATCC 25745, thus confirming its role as an inducer in the pen regulon.
-
-
-
-
Promoter prediction in the rhizobia
More LessThe ability to recognize and predict non-σ 54 promoters in the alphaproteobacteria is not well developed. In this study, 25 experimentally verified Sinorhizobium meliloti promoter sequences were compiled and used to predict the location of other related promoters in the S. meliloti genome. Fourteen candidate predictions were targeted for verification and of these at least 12 proved to be genuine promoters. As a result, the experimental identification of 12 novel promoters linked to genes rpoD, topA, rpmJ, trpS, ropB1, metC, rpsT, secE, trkH and three tRNA genes is reported. In all, 99 predicted and verified promoters are reported, including those linked with 13 tRNA genes, eight ribosomal protein genes and a number of other physiologically important or essential genes. On the basis of sequence conservation and a mutational analysis of promoter activity, the −35 and −10 consensus for these promoters is 5-CTTGAC-N17-CTATAT. This promoter structure, which seems to be widely conserved amongst several other genera in the alphaproteobacteria, shares significant similarity with, but is skewed by a 1 nt step from, the canonical Escherichia coli σ 70 promoter. Perhaps this difference is responsible for the observation that S. meliloti promoters are often poorly expressed in E. coli. In this regard, expression data from plasmid-borne gfp-reporter fusions to eight of the S. meliloti promoters verified in this work revealed that while these promoters were very active in S. meliloti and Agrobacterium tumefaciens only very low, near-background activity was detected in E. coli.
-
-
-
Transcriptomic and proteomic analyses of the pMOL30-encoded copper resistance in Cupriavidus metallidurans strain CH34
The four replicons of Cupriavidus metallidurans CH34 (the genome sequence was provided by the US Department of Energy–University of California Joint Genome Institute) contain two gene clusters putatively encoding periplasmic resistance to copper, with an arrangement of genes resembling that of the copSRABCD locus on the 2.1 Mb megaplasmid (MPL) of Ralstonia solanacearum, a closely related plant pathogen. One of the copSRABCD clusters was located on the 2.6 Mb MPL, while the second was found on the pMOL30 (234 kb) plasmid as part of a larger group of genes involved in copper resistance, spanning 17 857 bp in total. In this region, 19 ORFs (copVTMKNSRABCDIJGFLQHE) were identified based on the sequencing of a fragment cloned in an IncW vector, on the preliminary annotation by the Joint Genome Institute, and by using transcriptomic and proteomic data. When introduced into plasmid-cured derivatives of C. metallidurans CH34, the cop locus was able to restore the wild-type MIC, albeit with a biphasic survival curve, with respect to applied Cu(II) concentration. Quantitative-PCR data showed that the 19 ORFs were induced from 2- to 1159-fold when cells were challenged with elevated Cu(II) concentrations. Microarray data showed that the genes that were most induced after a Cu(II) challenge of 0.1 mM belonged to the pMOL30 cop cluster. Megaplasmidic cop genes were also induced, but at a much lower level, with the exception of the highly expressed MPL copD. Proteomic data allowed direct observation on two-dimensional gel electrophoresis, and via mass spectrometry, of pMOL30 CopK, CopR, CopS, CopA, CopB and CopC proteins. Individual cop gene expression depended on both the Cu(II) concentration and the exposure time, suggesting a sequential scheme in the resistance process, involving genes such as copK and copT in an initial phase, while other genes, such as copH, seem to be involved in a late response phase. A concentration of 0.4 mM Cu(II) was the highest to induce maximal expression of most cop genes.
-
-
-
Dispensable genes and foreign DNA in Streptococcus mutans
More LessA range of properties, including the ability to utilize various sugars, bind macromolecules and produce mutacins, are known to vary in their occurrence in different strains of Streptococcus mutans. In addition, insertion-sequence elements show a limited distribution and sequencing of the genome of S. mutans UA159 has revealed the presence of putative genomic islands of atypical base composition indicative of foreign DNA. PCR primers flanking regions suspected of having inserted DNA were designed on the basis of the genome sequence of S. mutans UA159 and used to explore variation in a collection of 39 strains isolated in various parts of the world over the last 40 years. Extensive differences between strains were detected, and similar insertion/deletion events appear to be present in the genomes of strains with very different origins. In two instances, insertion of foreign DNA appears to have displaced original S. mutans genes. Together with previous results on the occurrence of deletions in genes associated with sugar metabolism, the results indicate that S. mutans has a core genome and a dispensable genome, and that dispensable genes have become widely distributed through horizontal transfer.
-
-
-
Identification of cell cycle regulators in Mycobacterium tuberculosis by inhibition of septum formation and global transcriptional analysis
More LessIn Mycobacterium tuberculosis the mechanism of septum formation and regulation of cell division remains undefined. In other bacterial species FtsZ polymerization and septum formation are influenced through protein interactions in addition to transcriptional regulation, and the combination of these provides tight regulation of this process. However, homologues of proteins known to affect FtsZ assembly have not been identified and substantiated in M. tuberculosis. This suggests that M. tuberculosis may possess unique processes for regulation of septum formation. To begin to address this poorly understood aspect of M. tuberculosis physiology, FtsZ inhibitors were used to block cell division and the effects on bacterial morphology and the transcriptional response were examined. Inhibition of septum formation prevented cell division and led to bacterial filamentation. Microarray-based transcriptional profiling allowed the evaluation of multiple metabolic processes in response to inhibition of septum formation and when coupled with bioinformatics provided a means to identify regulatory elements and other gene products that probably influence septum formation.
-
- Pathogens And Pathogenicity
-
-
-
Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype
Mycobacterium abscessus is an increasingly important cause of human disease; however, virulence determinants are largely uncharacterized. Previously, it was demonstrated that a rough, wild-type human clinical isolate (390R) causes persistent, invasive infection, while a smooth isogenic mutant (390S) has lost this capability. During serial passage of 390S, a spontaneous rough revertant was obtained, which was named 390V. This revertant regained the ability to cause persistent, invasive infection in human monocytes and the lungs of mice. Glycopeptidolipid (GPL), which plays a role in environmental colonization, was present in abundance in the cell wall of 390S, and was associated with sliding motility and biofilm formation. In contrast, a marked reduction in the amount of GPL in the cell wall of 390R and 390V was correlated with cord formation, a property associated with mycobacterial virulence. These results indicate that the ability to switch between smooth and rough morphologies may allow M. abscessus to transition between a colonizing phenotype and a more virulent, invasive form.
-
-
-
-
Examination of Mycobacterium tuberculosis sigma factor mutants using low-dose aerosol infection of guinea pigs suggests a role for SigC in pathogenesis
More LessSecondary sigma factors in bacteria direct transcription of defence regulons in response to specific stresses. To identify which sigma factors in the human respiratory pathogen Mycobacterium tuberculosis are important for adaptive survival in vivo, defined null mutations were created in individual sigma factor genes. In this study, in vitro growth virulence and guinea pig pathology of M. tuberculosis mutants lacking functional sigma factors (SigC, SigF, or SigM) were compared to the parent strain, H37Rv. None of the mutant strains exhibited a growth deficiency in Middlebrook 7H9 broth, nor were any impaired for intracellular replication in the human monocytic macrophage cell-line THP-1. Following low-dose aerosol infection of guinea pigs, however, differences could be detected. While a SigM mutant resulted in lung and spleen granulomas of comparable composition to those found in H37Rv-infected animals, a SigF mutant was partially attenuated, exhibiting necrotic spleen granulomas and ill-defined lung granulomas. SigC mutants exhibited attenuation in the lung and spleen; notably, necrotic granulomas were absent. These data suggest that while SigF may be important for survival in the lung, SigC is likely a key regulator of pathogenesis and adaptive survival in the lung and spleen. Understanding how SigC mediates survival in the host should prove useful in the development of anti-tuberculosis therapies.
-
-
-
A plasmid-cured Chlamydia muridarum strain displays altered plaque morphology and reduced infectivity in cell culture
More LessA highly conserved cryptic plasmid is present in Chlamydia trachomatis yet naturally occurring plasmid-deficient isolates are very rare. This paper describes the isolation and characterization of a plasmid-deficient strain of C. muridarum, using novobiocin as a curing agent. Plasmid-deficient derivatives of C. muridarum strain Nigg were generated at high efficiencies (4–30 %). Phenotypic characterization revealed that the cured derivative was unable to accumulate glycogen within intracytoplasmic inclusions. In addition, this strain formed small plaques at a reduced efficiency compared to the wild-type parent.
-
Volumes and issues
-
Volume 171 (2025)
-
Volume 170 (2024)
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
