1887

Abstract

The subunit, the smallest subunit of bacterial RNA polymerase, is known to be involved in maintaining the conformation of the ′ subunit and aiding its recruitment to the rest of the core enzyme assembly in . It has recently been shown in , by creating a deletion mutation of the gene encoding , that the physiological role of the subunit also includes providing physical protection to ′. Interestingly, the mutant had altered colony morphology. This paper demonstrates that the mutant mycobacterium has pleiotropic phenotypes including reduced sliding motility and defective biofilm formation. Analysis of the spatial arrangement of biofilms by electron microscopy suggests that the altered phenotype of the mutant arises from a deficiency in generation of extracellular matrix. Complementation of the mutant strain with a copy of the wild-type gene integrated in the bacterial chromosome restored both sliding motility and biofilm formation to the wild-type state, unequivocally proving the role of in the characteristics observed for the mutant bacterium. Analysis of the cell wall composition demonstrated that the mutant bacterium had an identical glycopeptidolipid profile to the wild-type, but failed to synthesize the short-chain mycolic acids characteristic of biofilm growth in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28879-0
2006-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1741.html?itemId=/content/journal/micro/10.1099/mic.0.28879-0&mimeType=html&fmt=ahah

References

  1. Adams J. L, McLean R. J. 1999; Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol 65:4285–4287
    [Google Scholar]
  2. Alvarez E. T. 1885 Recherches sur le bacille de Lustgarten Arch Physiol Normal Pathol303–321;
    [Google Scholar]
  3. Balzer G. J, McLean R. J. 2002; The stringent response genes relA and spoT are important for Escherichia coli biofilms under slow-growth conditions. Can J Microbiol 48:675–680 [CrossRef]
    [Google Scholar]
  4. Bardouniotis E, Ceri H, Olson M. E. 2003; Biofilm formation and biocide susceptibility testing of Mycobacterium fortuitum and Mycobacterium marinum . Curr Microbiol 46:28–32 [CrossRef]
    [Google Scholar]
  5. Belisle J. T, McNeil M. R, Chatterjee D, Inamine J. M, Brennan P. J. 1993; Expression of the core lipopeptide of the glycopeptidolipid surface antigens in rough mutants of Mycobacterium avium . J Biol Chem 268:10510–10516
    [Google Scholar]
  6. Beloin C, Ghigo J. M. 2005; Finding gene-expression patterns in bacterial biofilms. Trends Microbiol 13:16–19 [CrossRef]
    [Google Scholar]
  7. Beloin C, Valle J, Latour-Lambert P. 8 other authors 2004; Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51:659–674
    [Google Scholar]
  8. Branda S. S, Gonzalez-Pastor J. E, Ben-Yehuda S, Losick R, Kolter R. 2001; Fruiting body formation by Bacillus subtilis . Proc Natl Acad Sci U S A 98:11621–11626 [CrossRef]
    [Google Scholar]
  9. Branda S. S, Vik S, Friedman L, Kolter R. 2005; Biofilms: the matrix revisited. Trends Microbiol 13:20–26 [CrossRef]
    [Google Scholar]
  10. Burgess R. R. 1969; Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem 244:6168–6176
    [Google Scholar]
  11. Christensen B. B, Sternberg C, Andersen J. B, Nielsen A. T, Givskov M, Molin S, Palmer R. J., Jr. 1999; Molecular tools for study of biofilm physiology. Methods Enzymol 310:20–42
    [Google Scholar]
  12. Corona-Izquierdo F. P, Membrillo-Hernandez J. 2002; A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiol Lett 211:105–110 [CrossRef]
    [Google Scholar]
  13. Costerton J. W, Stewart P. S, Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322 [CrossRef]
    [Google Scholar]
  14. Davey M. E, O'Toole G. A. 2000; Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867 [CrossRef]
    [Google Scholar]
  15. Etienne G, Villeneuve C, Billman-Jacobe H, Astarie-Dequeker C, Dupont M. A, Daffé M. 2002; The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis . Microbiology 148:3089–3100
    [Google Scholar]
  16. Flemming H. C. W. J, Mayer C, Korstgens V, Borchard W. 2000; Cohesiveness in biofilm matrix polymers. In Community Structure and Co-operation in Biofilms (SGM Symposium Series vol. 59) pp  87–105 Cambridge: Cambridge University Press;
    [Google Scholar]
  17. Friedman L, Kolter R. 2004; Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51:675–690
    [Google Scholar]
  18. Ghosh P, Ishihama A, Chatterji D. 2001; Escherichia coli RNA polymerase subunit omega and its N-terminal domain bind full-length β ' to facilitate incorporation into the α 2 β subassembly. Eur J Biochem 268:4621–4627 [CrossRef]
    [Google Scholar]
  19. Goodfellow M, Cross T. 1983 Classification London: Academic Press;
    [Google Scholar]
  20. Gottenbos B, Busscher H. J, van der Mei H. C. 1999; Models for studying initial adhesion and surface growth in biofilm formation on surfaces. Methods Enzymol 310:523–534
    [Google Scholar]
  21. Hall-Stoodley L, Lappin-Scott H. 1998; Biofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum . FEMS Microbiol Lett 168:77–84 [CrossRef]
    [Google Scholar]
  22. Hall-Stoodley L, Stoodley P. 2002; Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13:228–233 [CrossRef]
    [Google Scholar]
  23. Huang C. T, Xu K. D, McFeters G. A, Stewart P. S. 1998; Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl Environ Microbiol 64:1526–1531
    [Google Scholar]
  24. Jishage M, Ishihama A. 1998; A stationary phase protein in Escherichia coli with binding activity to the major sigma subunit of RNA polymerase. Proc Natl Acad Sci U S A 95:4953–4958 [CrossRef]
    [Google Scholar]
  25. Kies S, Otto M, Vuong C, Gotz F. 2001; Identification of the sigB operon in Staphylococcus epidermidis : construction and characterization of a sigB deletion mutant. Infect Immun 69:7933–7936 [CrossRef]
    [Google Scholar]
  26. Knobloch J. K, Bartscht K, Sabottke A, Rohde H, Feucht H. H, Mack D. 2001; Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol 183:2624–2633 [CrossRef]
    [Google Scholar]
  27. Kojima I, Kasuga K, Kobayashi M, Fukasawa A, Mizuno S, Arisawa A, Akagawa H. 2002; The rpoZ gene, encoding the RNA polymerase omega subunit, is required for antibiotic production and morphological differentiation in Streptomyces kasugaensis . J Bacteriol 184:6417–6423 [CrossRef]
    [Google Scholar]
  28. Kremer L, Douglas J. D, Baulard A. R. 9 other authors 2000; Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis . J Biol Chem 275:16857–16864 [CrossRef]
    [Google Scholar]
  29. Lemos J. A, Burne R. A, Brown T. A., Jr. 2004; Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans . Infect Immun 72:1431–1440 [CrossRef]
    [Google Scholar]
  30. Lustgarten S. 1884; Ueber spezifische Bacillen in syphilitischen Krankheitsprodukten. Wiener Medizinische Wochenschrift 1 .
  31. Mah T. F, O'Toole G. A. 2001; Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39 [CrossRef]
    [Google Scholar]
  32. Martinez A, Torello S, Kolter R. 1999; Sliding motility in mycobacteria. J Bacteriol 181:7331–7338
    [Google Scholar]
  33. Mathew R, Ramakanth M, Chatterji D. 2005; Deletion of the gene rpoZ , encoding the omega subunit of RNA polymerase, in Mycobacterium smegmatis results in fragmentation of the β ' subunit in the enzyme assembly. J Bacteriol 187:6565–6570 [CrossRef]
    [Google Scholar]
  34. Minakhin L, Bhagat S, Brunning A, Campbell E. A, Darst S. A, Ebright R. H, Severinov K. 2001; Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc Natl Acad Sci U S A 98:892–897 [CrossRef]
    [Google Scholar]
  35. Mukherjee K, Chatterji D. 1999; Alteration in template recognition by E. coli RNA polymerase lacking the omega subunit: a mechanistic analysis through gel retardation and foot-printing studies. J Biosci 24:453–459 [CrossRef]
    [Google Scholar]
  36. Mukherjee K, Nagai H, Shimamoto N, Chatterji D. 1999; GroEL is involved in activation of Escherichia coli RNA polymerase devoid of the omega subunit in vivo. Eur J Biochem 266:228–235 [CrossRef]
    [Google Scholar]
  37. Mukherjee R, Gomez M, Jayaraman N, Smith I, Chatterji D. 2005; Hyperglycosylation of glycopeptidolipid of Mycobacterium smegmatis under nutrient starvation: structural studies. Microbiology 151:2385–2392 [CrossRef]
    [Google Scholar]
  38. Ojha A. K, Varma S, Chatterji D. 2002; Synthesis of an unusual polar glycopeptidolipid in glucose-limited culture of Mycobacterium smegmatis . Microbiology 148:3039–3048
    [Google Scholar]
  39. Ojha A, Anand M, Bhatt A, Kremer L, Hatfull G. F, Jacobs W. R., Jr. 2005; GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873 [CrossRef]
    [Google Scholar]
  40. O'Toole G. A, Kolter R. 1998; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461 [CrossRef]
    [Google Scholar]
  41. O'Toole G, Kaplan H. B, Kolter R. 2000; Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79 [CrossRef]
    [Google Scholar]
  42. Potera C. 1996; Biofilms invade microbiology. Science 273:1795–1797 [CrossRef]
    [Google Scholar]
  43. Prigent-Combaret C, Vidal O, Dorel C, Lejeune P. 1999; Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli . J Bacteriol 181:5993–6002
    [Google Scholar]
  44. Prigent-Combaret C, Brombacher E, Vidal O, Ambert A, Lejeune P, Landini P, Dorel C. 2001; Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183:7213–7223 [CrossRef]
    [Google Scholar]
  45. Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W. 2000; Alternative transcription factor σ [sup]B[/sup] is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J Bacteriol 182:6824–6826 [CrossRef]
    [Google Scholar]
  46. Rasmussen K, Lewandowski Z. 1998; Microelectrode measurements of local mass transport rates in heterogeneous biofilms. Biotechnol Bioeng 59:302–309 [CrossRef]
    [Google Scholar]
  47. Rastogi N, Frehel C, Ryter A, Ohayon H, Lesourd M, David H. L. 1981; Multiple drug resistance in Mycobacterium avium : is the wall architecture responsible for exclusion of antimicrobial agents?. Antimicrob Agents Chemother 20:666–677 [CrossRef]
    [Google Scholar]
  48. Rastogi N, Legrand E, Sola C. 2001; The mycobacteria: an introduction to nomenclature and pathogenesis. Rev Sci Tech 20:21–54
    [Google Scholar]
  49. Recht J, Kolter R. 2001; Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis . J Bacteriol 183:5718–5724 [CrossRef]
    [Google Scholar]
  50. Recht J, Martinez A, Torello S, Kolter R. 2000; Genetic analysis of sliding motility in Mycobacterium smegmatis . J Bacteriol 182:4348–4351 [CrossRef]
    [Google Scholar]
  51. Ren D, Bedzyk L. A, Setlow P, Thomas S. M, Ye R. W, Wood T. K. 2004; Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechnol Bioeng 86:344–364 [CrossRef]
    [Google Scholar]
  52. Rosenberg M, Kjelleberg S. 1986; Hydrophobic interactions in bacterial adhesion. Adv Microb Ecol 9:353–393
    [Google Scholar]
  53. Rosenberg M, Gutnick D, Rosenberg E. 1980; Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33 [CrossRef]
    [Google Scholar]
  54. Sauer K, Camper A. K, Ehrlich G. D, Costerton J. W, Davies D. G. 2002; Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154 [CrossRef]
    [Google Scholar]
  55. Schembri M. A, Kjaergaard K, Klemm P. 2003; Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267 [CrossRef]
    [Google Scholar]
  56. Stewart P. S, Costerton J. W. 2001; Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138 [CrossRef]
    [Google Scholar]
  57. Sutherland I. W. 2001; The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227 [CrossRef]
    [Google Scholar]
  58. Taylor C. M, Beresford M, Epton H. A, Sigee D. C, Shama G, Andrew P. W, Roberts I. S. 2002; Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J Bacteriol 184:621–628 [CrossRef]
    [Google Scholar]
  59. Valle J, Toledo-Arana A, Berasain C, Ghigo J. M, Amorena B, Penades J. R, Lasa I. 2003; SarA and not σ [sup]B[/sup] is essential for biofilm development by Staphylococcus aureus . Mol Microbiol 48:1075–1087 [CrossRef]
    [Google Scholar]
  60. Vrentas C. E, Gaal T, Ross W, Ebright R. H, Gourse R. L. 2005; Response of RNA polymerase to ppGpp: requirement for the ω subunit and relief of this requirement by DksA. Genes Dev 19:2378–2387 [CrossRef]
    [Google Scholar]
  61. Webb J. S, Thompson L. S, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S. 2003; Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:4585–4592 [CrossRef]
    [Google Scholar]
  62. Whitchurch C. B, Tolker-Nielsen T, Ragas P. C, Mattick J. S. 2002; Extracellular DNA required for bacterial biofilm formation. Science 295:1487 [CrossRef]
    [Google Scholar]
  63. Whiteley M, Bangera M. G, Bumgarner R. E, Parsek M. R, Teitzel G. M, Lory S, Greenberg E. P. 2001; Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864 [CrossRef]
    [Google Scholar]
  64. Xu K. D, Franklin M. J, Park C. H, McFeters G. A, Stewart P. S. 2001; Gene expression and protein levels of the stationary phase sigma factor, RpoS, in continuously-fed Pseudomonas aeruginosa biofilms. FEMS Microbiol Lett 199:67–71 [CrossRef]
    [Google Scholar]
  65. Yarwood J. M, Bartels D. J, Volper E. M, Greenberg E. P. 2004; Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol 186:1838–1850 [CrossRef]
    [Google Scholar]
  66. Yildiz F. H, Schoolnik G. K. 1999; Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U S A 96:4028–4033 [CrossRef]
    [Google Scholar]
  67. Yoshida A, Kuramitsu H. K. 2002; Multiple Streptococcus mutans genes are involved in biofilm formation. Appl Environ Microbiol 68:6283–6291 [CrossRef]
    [Google Scholar]
  68. Zhang G, Campbell E. A, Minakhin L, Richter C, Severinov K, Darst S. A. 1999; Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98:811–824 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28879-0
Loading
/content/journal/micro/10.1099/mic.0.28879-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error