1887

Abstract

The subunit, the smallest subunit of bacterial RNA polymerase, is known to be involved in maintaining the conformation of the ′ subunit and aiding its recruitment to the rest of the core enzyme assembly in . It has recently been shown in , by creating a deletion mutation of the gene encoding , that the physiological role of the subunit also includes providing physical protection to ′. Interestingly, the mutant had altered colony morphology. This paper demonstrates that the mutant mycobacterium has pleiotropic phenotypes including reduced sliding motility and defective biofilm formation. Analysis of the spatial arrangement of biofilms by electron microscopy suggests that the altered phenotype of the mutant arises from a deficiency in generation of extracellular matrix. Complementation of the mutant strain with a copy of the wild-type gene integrated in the bacterial chromosome restored both sliding motility and biofilm formation to the wild-type state, unequivocally proving the role of in the characteristics observed for the mutant bacterium. Analysis of the cell wall composition demonstrated that the mutant bacterium had an identical glycopeptidolipid profile to the wild-type, but failed to synthesize the short-chain mycolic acids characteristic of biofilm growth in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28879-0
2006-06-01
2020-07-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1741.html?itemId=/content/journal/micro/10.1099/mic.0.28879-0&mimeType=html&fmt=ahah

References

  1. Adams J. L, McLean R. J. 1999; Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol65:4285–4287
    [Google Scholar]
  2. Alvarez E. T. 1885; Recherches sur le bacille de Lustgarten Arch Physiol Normal Pathol303–321;
    [Google Scholar]
  3. Balzer G. J, McLean R. J. 2002; The stringent response genes relA and spoT are important for Escherichia coli biofilms under slow-growth conditions. Can J Microbiol48:675–680[CrossRef]
    [Google Scholar]
  4. Bardouniotis E, Ceri H, Olson M. E. 2003; Biofilm formation and biocide susceptibility testing of Mycobacterium fortuitum and Mycobacterium marinum . Curr Microbiol46:28–32[CrossRef]
    [Google Scholar]
  5. Belisle J. T, McNeil M. R, Chatterjee D, Inamine J. M, Brennan P. J. 1993; Expression of the core lipopeptide of the glycopeptidolipid surface antigens in rough mutants of Mycobacterium avium . J Biol Chem268:10510–10516
    [Google Scholar]
  6. Beloin C, Ghigo J. M. 2005; Finding gene-expression patterns in bacterial biofilms. Trends Microbiol13:16–19[CrossRef]
    [Google Scholar]
  7. Beloin C, Valle J, Latour-Lambert P.8 other authors 2004; Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol51:659–674
    [Google Scholar]
  8. Branda S. S, Gonzalez-Pastor J. E, Ben-Yehuda S, Losick R, Kolter R. 2001; Fruiting body formation by Bacillus subtilis . Proc Natl Acad Sci U S A98:11621–11626[CrossRef]
    [Google Scholar]
  9. Branda S. S, Vik S, Friedman L, Kolter R. 2005; Biofilms: the matrix revisited. Trends Microbiol13:20–26[CrossRef]
    [Google Scholar]
  10. Burgess R. R. 1969; Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem244:6168–6176
    [Google Scholar]
  11. Christensen B. B, Sternberg C, Andersen J. B, Nielsen A. T, Givskov M, Molin S, Palmer R. J., Jr. 1999; Molecular tools for study of biofilm physiology. Methods Enzymol310:20–42
    [Google Scholar]
  12. Corona-Izquierdo F. P, Membrillo-Hernandez J. 2002; A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiol Lett211:105–110[CrossRef]
    [Google Scholar]
  13. Costerton J. W, Stewart P. S, Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science284:1318–1322[CrossRef]
    [Google Scholar]
  14. Davey M. E, O'Toole G. A. 2000; Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev64:847–867[CrossRef]
    [Google Scholar]
  15. Etienne G, Villeneuve C, Billman-Jacobe H, Astarie-Dequeker C, Dupont M. A, Daffé M. 2002; The impact of the absence of glycopeptidolipids on the ultrastructure, cell surface and cell wall properties, and phagocytosis of Mycobacterium smegmatis . Microbiology148:3089–3100
    [Google Scholar]
  16. Flemming H. C. W. J, Mayer C, Korstgens V, Borchard W. 2000; Cohesiveness in biofilm matrix polymers. In Community Structure and Co-operation in Biofilms (SGM Symposium Series vol. 59) pp 87–105 Cambridge: Cambridge University Press;
    [Google Scholar]
  17. Friedman L, Kolter R. 2004; Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol51:675–690
    [Google Scholar]
  18. Ghosh P, Ishihama A, Chatterji D. 2001; Escherichia coli RNA polymerase subunit omega and its N-terminal domain bind full-length β ' to facilitate incorporation into the α 2 β subassembly. Eur J Biochem268:4621–4627[CrossRef]
    [Google Scholar]
  19. Goodfellow M, Cross T. 1983; Classification London: Academic Press;
    [Google Scholar]
  20. Gottenbos B, Busscher H. J, van der Mei H. C. 1999; Models for studying initial adhesion and surface growth in biofilm formation on surfaces. Methods Enzymol310:523–534
    [Google Scholar]
  21. Hall-Stoodley L, Lappin-Scott H. 1998; Biofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum . FEMS Microbiol Lett168:77–84[CrossRef]
    [Google Scholar]
  22. Hall-Stoodley L, Stoodley P. 2002; Developmental regulation of microbial biofilms. Curr Opin Biotechnol13:228–233[CrossRef]
    [Google Scholar]
  23. Huang C. T, Xu K. D, McFeters G. A, Stewart P. S. 1998; Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl Environ Microbiol64:1526–1531
    [Google Scholar]
  24. Jishage M, Ishihama A. 1998; A stationary phase protein in Escherichia coli with binding activity to the major sigma subunit of RNA polymerase. Proc Natl Acad Sci U S A95:4953–4958[CrossRef]
    [Google Scholar]
  25. Kies S, Otto M, Vuong C, Gotz F. 2001; Identification of the sigB operon in Staphylococcus epidermidis : construction and characterization of a sigB deletion mutant. Infect Immun69:7933–7936[CrossRef]
    [Google Scholar]
  26. Knobloch J. K, Bartscht K, Sabottke A, Rohde H, Feucht H. H, Mack D. 2001; Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol183:2624–2633[CrossRef]
    [Google Scholar]
  27. Kojima I, Kasuga K, Kobayashi M, Fukasawa A, Mizuno S, Arisawa A, Akagawa H. 2002; The rpoZ gene, encoding the RNA polymerase omega subunit, is required for antibiotic production and morphological differentiation in Streptomyces kasugaensis . J Bacteriol184:6417–6423[CrossRef]
    [Google Scholar]
  28. Kremer L, Douglas J. D, Baulard A. R.9 other authors 2000; Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis . J Biol Chem275:16857–16864[CrossRef]
    [Google Scholar]
  29. Lemos J. A, Burne R. A, Brown T. A., Jr. 2004; Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans . Infect Immun72:1431–1440[CrossRef]
    [Google Scholar]
  30. Lustgarten S. 1884; Ueber spezifische Bacillen in syphilitischen Krankheitsprodukten. Wiener Medizinische Wochenschrift 1 .
  31. Mah T. F, O'Toole G. A. 2001; Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol9:34–39[CrossRef]
    [Google Scholar]
  32. Martinez A, Torello S, Kolter R. 1999; Sliding motility in mycobacteria. J Bacteriol181:7331–7338
    [Google Scholar]
  33. Mathew R, Ramakanth M, Chatterji D. 2005; Deletion of the gene rpoZ , encoding the omega subunit of RNA polymerase, in Mycobacterium smegmatis results in fragmentation of the β ' subunit in the enzyme assembly. J Bacteriol187:6565–6570[CrossRef]
    [Google Scholar]
  34. Minakhin L, Bhagat S, Brunning A, Campbell E. A, Darst S. A, Ebright R. H, Severinov K. 2001; Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc Natl Acad Sci U S A98:892–897[CrossRef]
    [Google Scholar]
  35. Mukherjee K, Chatterji D. 1999; Alteration in template recognition by E. coli RNA polymerase lacking the omega subunit: a mechanistic analysis through gel retardation and foot-printing studies. J Biosci24:453–459[CrossRef]
    [Google Scholar]
  36. Mukherjee K, Nagai H, Shimamoto N, Chatterji D. 1999; GroEL is involved in activation of Escherichia coli RNA polymerase devoid of the omega subunit in vivo. Eur J Biochem266:228–235[CrossRef]
    [Google Scholar]
  37. Mukherjee R, Gomez M, Jayaraman N, Smith I, Chatterji D. 2005; Hyperglycosylation of glycopeptidolipid of Mycobacterium smegmatis under nutrient starvation: structural studies. Microbiology151:2385–2392[CrossRef]
    [Google Scholar]
  38. Ojha A. K, Varma S, Chatterji D. 2002; Synthesis of an unusual polar glycopeptidolipid in glucose-limited culture of Mycobacterium smegmatis . Microbiology148:3039–3048
    [Google Scholar]
  39. Ojha A, Anand M, Bhatt A, Kremer L, Hatfull G. F, Jacobs W. R., Jr. 2005; GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell123:861–873[CrossRef]
    [Google Scholar]
  40. O'Toole G. A, Kolter R. 1998; Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol28:449–461[CrossRef]
    [Google Scholar]
  41. O'Toole G, Kaplan H. B, Kolter R. 2000; Biofilm formation as microbial development. Annu Rev Microbiol54:49–79[CrossRef]
    [Google Scholar]
  42. Potera C. 1996; Biofilms invade microbiology. Science273:1795–1797[CrossRef]
    [Google Scholar]
  43. Prigent-Combaret C, Vidal O, Dorel C, Lejeune P. 1999; Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli . J Bacteriol181:5993–6002
    [Google Scholar]
  44. Prigent-Combaret C, Brombacher E, Vidal O, Ambert A, Lejeune P, Landini P, Dorel C. 2001; Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol183:7213–7223[CrossRef]
    [Google Scholar]
  45. Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W. 2000; Alternative transcription factor σ [sup]B[/sup] is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J Bacteriol182:6824–6826[CrossRef]
    [Google Scholar]
  46. Rasmussen K, Lewandowski Z. 1998; Microelectrode measurements of local mass transport rates in heterogeneous biofilms. Biotechnol Bioeng59:302–309[CrossRef]
    [Google Scholar]
  47. Rastogi N, Frehel C, Ryter A, Ohayon H, Lesourd M, David H. L. 1981; Multiple drug resistance in Mycobacterium avium : is the wall architecture responsible for exclusion of antimicrobial agents?. Antimicrob Agents Chemother20:666–677[CrossRef]
    [Google Scholar]
  48. Rastogi N, Legrand E, Sola C. 2001; The mycobacteria: an introduction to nomenclature and pathogenesis. Rev Sci Tech20:21–54
    [Google Scholar]
  49. Recht J, Kolter R. 2001; Glycopeptidolipid acetylation affects sliding motility and biofilm formation in Mycobacterium smegmatis . J Bacteriol183:5718–5724[CrossRef]
    [Google Scholar]
  50. Recht J, Martinez A, Torello S, Kolter R. 2000; Genetic analysis of sliding motility in Mycobacterium smegmatis . J Bacteriol182:4348–4351[CrossRef]
    [Google Scholar]
  51. Ren D, Bedzyk L. A, Setlow P, Thomas S. M, Ye R. W, Wood T. K. 2004; Gene expression in Bacillus subtilis surface biofilms with and without sporulation and the importance of yveR for biofilm maintenance. Biotechnol Bioeng86:344–364[CrossRef]
    [Google Scholar]
  52. Rosenberg M, Kjelleberg S. 1986; Hydrophobic interactions in bacterial adhesion. Adv Microb Ecol9:353–393
    [Google Scholar]
  53. Rosenberg M, Gutnick D, Rosenberg E. 1980; Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett9:29–33[CrossRef]
    [Google Scholar]
  54. Sauer K, Camper A. K, Ehrlich G. D, Costerton J. W, Davies D. G. 2002; Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol184:1140–1154[CrossRef]
    [Google Scholar]
  55. Schembri M. A, Kjaergaard K, Klemm P. 2003; Global gene expression in Escherichia coli biofilms. Mol Microbiol48:253–267[CrossRef]
    [Google Scholar]
  56. Stewart P. S, Costerton J. W. 2001; Antibiotic resistance of bacteria in biofilms. Lancet358:135–138[CrossRef]
    [Google Scholar]
  57. Sutherland I. W. 2001; The biofilm matrix – an immobilized but dynamic microbial environment. Trends Microbiol9:222–227[CrossRef]
    [Google Scholar]
  58. Taylor C. M, Beresford M, Epton H. A, Sigee D. C, Shama G, Andrew P. W, Roberts I. S. 2002; Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J Bacteriol184:621–628[CrossRef]
    [Google Scholar]
  59. Valle J, Toledo-Arana A, Berasain C, Ghigo J. M, Amorena B, Penades J. R, Lasa I. 2003; SarA and not σ [sup]B[/sup] is essential for biofilm development by Staphylococcus aureus . Mol Microbiol48:1075–1087[CrossRef]
    [Google Scholar]
  60. Vrentas C. E, Gaal T, Ross W, Ebright R. H, Gourse R. L. 2005; Response of RNA polymerase to ppGpp: requirement for the ω subunit and relief of this requirement by DksA. Genes Dev19:2378–2387[CrossRef]
    [Google Scholar]
  61. Webb J. S, Thompson L. S, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S. 2003; Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol185:4585–4592[CrossRef]
    [Google Scholar]
  62. Whitchurch C. B, Tolker-Nielsen T, Ragas P. C, Mattick J. S. 2002; Extracellular DNA required for bacterial biofilm formation. Science295:1487[CrossRef]
    [Google Scholar]
  63. Whiteley M, Bangera M. G, Bumgarner R. E, Parsek M. R, Teitzel G. M, Lory S, Greenberg E. P. 2001; Gene expression in Pseudomonas aeruginosa biofilms. Nature413:860–864[CrossRef]
    [Google Scholar]
  64. Xu K. D, Franklin M. J, Park C. H, McFeters G. A, Stewart P. S. 2001; Gene expression and protein levels of the stationary phase sigma factor, RpoS, in continuously-fed Pseudomonas aeruginosa biofilms. FEMS Microbiol Lett199:67–71[CrossRef]
    [Google Scholar]
  65. Yarwood J. M, Bartels D. J, Volper E. M, Greenberg E. P. 2004; Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol186:1838–1850[CrossRef]
    [Google Scholar]
  66. Yildiz F. H, Schoolnik G. K. 1999; Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U S A96:4028–4033[CrossRef]
    [Google Scholar]
  67. Yoshida A, Kuramitsu H. K. 2002; Multiple Streptococcus mutans genes are involved in biofilm formation. Appl Environ Microbiol68:6283–6291[CrossRef]
    [Google Scholar]
  68. Zhang G, Campbell E. A, Minakhin L, Richter C, Severinov K, Darst S. A. 1999; Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell98:811–824[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28879-0
Loading
/content/journal/micro/10.1099/mic.0.28879-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error