1887

Abstract

is a strictly anaerobic methanogenic archaeon, which can survive oxidative stress. The oxidative stress agent paraquat (PQ) suppressed growth of at concentrations of 50–200 μM. Hydrogen peroxide (HO) inhibited growth at concentrations of 0.4–1.6 mM. Catalase activity in cell-free extracts of increased about threefold during HO stress (1.3 mM HO, 2–4 h exposure) and nearly twofold during superoxide stress (160 μM PQ, 2 h exposure). PQ (160 μM, 2–4 h exposure) and HO (1.3 mM, 2 h exposure) also influenced superoxide dismutase activity in cell-free extracts of . Dot-blot analysis was performed on total RNA isolated from HO- and PQ-exposed cultures, using labelled internal DNA fragments of the and genes. It was shown that HO but not PQ strongly induced up-regulation of the gene. PQ and to a lesser degree HO induced the expression of superoxide dismutase. The results indicate the regulation of the adaptive response of to different oxidative stresses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28542-0
2006-06-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1671.html?itemId=/content/journal/micro/10.1099/mic.0.28542-0&mimeType=html&fmt=ahah

References

  1. Abdollahi, H. & Wimpenny, J. W. T. ( 1990; ). Effects of oxygen on the growth of Desulfovibrio desulfuricans. J Gen Microbiol 136, 1025–1030.[CrossRef]
    [Google Scholar]
  2. Amano, A., Ishimoto, T., Tamagawa, H. & Shizukuishi, S. ( 1992; ). Role of superoxide dismutase in resistance of Porphyromonas gingivalis to killing by polymorphonuclear leukocytes. Infect Immun 60, 712–714.
    [Google Scholar]
  3. Beers, R. F. & Sizer, I. W. ( 1952; ). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195, 133–140.
    [Google Scholar]
  4. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  5. Briolat, V. & Reysset, G. ( 2002; ). Identification of the Clostridium perfringens genes, involved in the adaptive response to oxidative stress. J Bacteriol 184, 2333–2343.[CrossRef]
    [Google Scholar]
  6. Brioukhanov, A. L. & Netrusov, A. I. ( 2004; ). Catalase and superoxide dismutase: distribution, properties and physiological role in cells of strict anaerobes. Biokhimiia 69, 949–962.[CrossRef]
    [Google Scholar]
  7. Brioukhanov, A., Netrusov, A., Sordel, M., Thauer, R. K. & Shima, S. ( 2000; ). Protection of Methanosarcina barkeri against oxidative stress: identification and characterization of an iron superoxide dismutase. Arch Microbiol 174, 213–216.[CrossRef]
    [Google Scholar]
  8. Briukhanov, A. L., Thauer, R. K. & Netrusov, A. I. ( 2002; ). Catalase and superoxide dismutase in the cells of strictly anaerobic microorganisms. Mikrobiologiia 71, 330–335.
    [Google Scholar]
  9. Brioukhanov, A. L., Nesatyy, V. J. & Netrusov, A. I. ( 2006; ). Purification and characterization of a Fe-containing superoxide dismutase from Methanobrevibacter arboriphilus strain AZ. Biokhimiia 71, 546–553.
    [Google Scholar]
  10. Bult, C. J., White, O., Olsen, G. J. & 20 other authors ( 1996; ). Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073.[CrossRef]
    [Google Scholar]
  11. Chin, K. J. & Conrad, R. ( 1995; ). Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol Ecol 18, 85–102.[CrossRef]
    [Google Scholar]
  12. Elstner, E. F. ( 1990; ). Biochemie der Sauerstoffaktivierung und aktivierte Sauerstoffspezies. In Der Sauerstoff: Biochemie, Biologie, Medizin, pp. 5–55. Edited by E. F. Elstner. Mannheim, Germany: BI-Wissenschaftsverlag.
  13. Fareleira, P., Santos, B. S., Antonio, C., Morades-Ferreira, P., LeGall, J., Xavier, A. V. & Santos, H. ( 2003; ). Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. Microbiology 149, 1513–1522.[CrossRef]
    [Google Scholar]
  14. Fetzer, S., Bak, F. & Conrad, R. ( 1993; ). Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol Ecol 12, 107–115.[CrossRef]
    [Google Scholar]
  15. Fridovich, I. ( 1995; ). Superoxide radical and superoxide dismutases. Annu Rev Biochem 64, 97–112.[CrossRef]
    [Google Scholar]
  16. Gregory, E. M. & Dapper, C. H. ( 1980; ). Chemical and physical differentiation of superoxide dismutases in anaerobes. J Bacteriol 144, 967–974.
    [Google Scholar]
  17. Hewitt, J. & Morris, J. G. ( 1975; ). Superoxide dismutase in some obligately anaerobic bacteria. FEBS Lett 50, 315–318.[CrossRef]
    [Google Scholar]
  18. Hungate, R. E. ( 1967; ). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 2B, 117–132.
    [Google Scholar]
  19. Jarrell, K. F., Faguy, D., Herbert, A. M. & Kalmokoff, M. L. ( 1992; ). A general method of isolating high molecular weight DNA from methanogenic archaea (archaeobacteria). Can J Microbiol 38, 65–68.[CrossRef]
    [Google Scholar]
  20. Jean, D., Briolat, V. & Reysset, G. ( 2004; ). Oxidative stress response in Clostridium perfringens. Microbiology 150, 1649–1659.[CrossRef]
    [Google Scholar]
  21. Karrasch, M., Bott, M. & Thauer, R. K. ( 1989; ). Carbonic anhydrase activity in acetate-grown Methanosarcina barkeri. Arch Microbiol 151, 137–142.[CrossRef]
    [Google Scholar]
  22. Kiener, A. & Leisinger, T. ( 1983; ). Oxygen sensitivity of methanogenic bacteria. Syst Appl Microbiol 4, 305–312.[CrossRef]
    [Google Scholar]
  23. Kirby, T. W., Lancaster, J. R., Jr & Fridovich, I. ( 1981; ). Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch Biochem Biophys 210, 140–148.[CrossRef]
    [Google Scholar]
  24. Leadbetter, J. R. & Breznak, J. A. ( 1996; ). Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62, 3620–3631.
    [Google Scholar]
  25. Lynch, M. C. & Kuramitsu, H. K. ( 1999; ). Role of superoxide dismutase activity in the physiology of Porphyromonas gingivalis. Infect Immunol 67, 3367–3375.
    [Google Scholar]
  26. Lynch, A. S. & Lin, E. C. ( 1996; ). Responses to molecular oxygen. In Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, 2nd edn, pp. 1526–1539. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  27. McCord, J. M. & Fridovich, I. ( 1969; ). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049–6055.
    [Google Scholar]
  28. Nelson, D. P. & Kiesow, L. A. ( 1972; ). Enthalpy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem 49, 474–478.[CrossRef]
    [Google Scholar]
  29. Pennington, C. D. & Gregory, E. M. ( 1986; ). Isolation and reconstitution of iron- and manganese-containing superoxide dismutases from Bacteroides thetaiotaomicron. J Bacteriol 166, 528–532.
    [Google Scholar]
  30. Peters, V. & Conrad, R. ( 1995; ). Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl Environ Microbiol 61, 1673–1676.
    [Google Scholar]
  31. Privalle, C. T. & Gregory, E. M. ( 1979; ). Superoxide dismutase and O2 lethality in Bacteroides fragilis. J Bacteriol 138, 139–145.
    [Google Scholar]
  32. Rocha, E. R. & Smith, C. J. ( 1995; ). Biochemical and genetic analyses of a catalase from the anaerobic bacterium Bacteroides fragilis. J Bacteriol 177, 3111–3119.
    [Google Scholar]
  33. Rocha, E. R. & Smith, C. J. ( 1997; ). Regulation of Bacteroides fragilis katB mRNA by oxidative stress and carbon limitation. J Bacteriol 179, 7033–7039.
    [Google Scholar]
  34. Rocha, E. R., Selby, T., Coleman, J. P. & Smith, C. J. ( 1996; ). Oxidative stress response in an anaerobe, Bacteroides fragilis: a role for catalase in protection against hydrogen peroxide. J Bacteriol 178, 6895–6903.
    [Google Scholar]
  35. Rocha, E. R., Herren, C. D., Smalley, D. J. & Smith, C. J. ( 2003; ). The complex oxidative stress response of Bacteroides fragilis: the role of OxyR in control of gene expression. Anaerobe 9, 165–173.[CrossRef]
    [Google Scholar]
  36. Rosner, J. L. & Storz, G. ( 1997; ). Regulation of bacterial responses to oxidative stress. Curr Top Cell Regul 35, 163–177.
    [Google Scholar]
  37. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Seedorf, H., Dreisbach, A., Hedderich, R., Shima, S. & Thauer, R. K. ( 2004; ). F420 : H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification. Arch Microbiol 182, 126–137.
    [Google Scholar]
  39. Shima, S., Netrusov, A., Sordel, M., Wicke, M., Hartmann, G. C. & Thauer, R. K. ( 1999; ). Purification, characterization, and primary structure of a monofunctional catalase from Methanosarcina barkeri. Arch Microbiol 171, 317–323.[CrossRef]
    [Google Scholar]
  40. Shima, S., Sordel-Klippert, M., Brioukhanov, A., Netrusov, A., Linder, D. & Thauer, R. K. ( 2001; ). Characterization of a heme-dependent catalase from Methanobrevibacter arboriphilus. Appl Environ Microbiol 67, 3041–3045.[CrossRef]
    [Google Scholar]
  41. Smith, D. R., Doucette-Stamm, L. A., Deloughery, C. & 22 other authors ( 1997; ). Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics. J Bacteriol 179, 7135–7155.
    [Google Scholar]
  42. Storz, G. & Imlay, J. A. ( 1999; ). Oxidative stress. Curr Opin Microbiol 2, 188–194.[CrossRef]
    [Google Scholar]
  43. Takao, M., Yasui, A. & Oikawa, A. ( 1991; ). Unique characteristics of superoxide dismutase of a strictly anaerobic archaebacterium Methanobacterium thermoautotrophicum. J Biol Chem 266, 14151–14154.
    [Google Scholar]
  44. Touati, D. ( 1997; ). Superoxide dismutases in bacteria and pathogen protists. In Oxidative Stress and the Molecular Biology of Antioxidant Defenses, pp. 447–493. Edited by J. G. Scandalios. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  45. Weidauer, E., Morke, W., Foth, H. & Bromme, H. J. ( 2002; ). Does the anaerobic formation of hydroxyl radicals by paraquat monocation radicals and hydrogen peroxide require the presence of transition metals? Arch Toxicol 76, 89–95.[CrossRef]
    [Google Scholar]
  46. Whitman, W. B., Bowen, T. L. & Boone, D. R. ( 1992; ). The methanogenic bacteria. In The Prokaryotes, pp. 719–767, 2nd edn. Edited by A. Balows and others. New York: Springer.
  47. Winterbourn, C. C. & Sutton, H. C. ( 1984; ). Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence. Arch Biochem Biophys 235, 116–126.[CrossRef]
    [Google Scholar]
  48. Zhilina, T. N. ( 1972; ). Death of Methanosarcina in the air. Mikrobiologiia 41, 1105–1106.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28542-0
Loading
/content/journal/micro/10.1099/mic.0.28542-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error