1887

Abstract

In the mechanism of septum formation and regulation of cell division remains undefined. In other bacterial species FtsZ polymerization and septum formation are influenced through protein interactions in addition to transcriptional regulation, and the combination of these provides tight regulation of this process. However, homologues of proteins known to affect FtsZ assembly have not been identified and substantiated in . This suggests that may possess unique processes for regulation of septum formation. To begin to address this poorly understood aspect of physiology, FtsZ inhibitors were used to block cell division and the effects on bacterial morphology and the transcriptional response were examined. Inhibition of septum formation prevented cell division and led to bacterial filamentation. Microarray-based transcriptional profiling allowed the evaluation of multiple metabolic processes in response to inhibition of septum formation and when coupled with bioinformatics provided a means to identify regulatory elements and other gene products that probably influence septum formation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28762-0
2006-06-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1789.html?itemId=/content/journal/micro/10.1099/mic.0.28762-0&mimeType=html&fmt=ahah

References

  1. Ausmees N, Jacobs-Wagner C. 2003; Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus . Annu Rev Microbiol57:225–247[CrossRef]
    [Google Scholar]
  2. Bell K. S, Sebaihia M, Pritchard L. 29 other authors 2004; Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci U S A101:11105–11110[CrossRef]
    [Google Scholar]
  3. Betts J. C, Lukey P. T, Robb L. C, McAdam R. A, Duncan K. 2002; Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol43:717–731[CrossRef]
    [Google Scholar]
  4. Betts J. C, McLaren A, Lennon M. G, Kelly F. M, Lukey P. T, Blakemore S. J, Duncan K. 2003; Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis . Antimicrob Agents Chemother47:2903–2913[CrossRef]
    [Google Scholar]
  5. Boshoff H. I, Myers T. G, Copp B. R, McNeil M. R, Wilson M. A, Barry C. E 3rd. 2004; The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J Biol Chem279:40174–40184[CrossRef]
    [Google Scholar]
  6. Cole S. T, Brosch R, Parkhill J.39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544 erratum 396, 190[CrossRef]
    [Google Scholar]
  7. Crick D. C, Mahapatra S, Brennan P. J. 2001; Biosynthesis of the arabinogalactan–peptidoglycan complex of Mycobacterium tuberculosis . Glycobiology11:107R–118R[CrossRef]
    [Google Scholar]
  8. Crick D. C, Brennan P. J, McNeil M. R. 2004; The cell wall of Mycobacterium tuberculosis. In Tuberculosis pp 115–134 Edited by Rom W. N., Garay S. M.. Philadelphia: Lippincott Williams & Wilkins;
    [Google Scholar]
  9. Den Blaauwen T, Buddelmeijer N, Aarsman M. E, Hameete C. M, Nanninga N. 1999; Timing of FtsZ assembly in Escherichia coli . J Bacteriol181:5167–5175
    [Google Scholar]
  10. Desai A, Mitchison T. J. 1998; Tubulin and FtsZ structures: functional and therapeutic implications. Bioessays20:523–527[CrossRef]
    [Google Scholar]
  11. Downing K. H. 2000; Structural basis for the interaction of tubulin with proteins and drugs that affect microtubule dynamics. Annu Rev Cell Dev Biol16:89–111[CrossRef]
    [Google Scholar]
  12. Garrigues G. E, Cho D. R, Rubash H. E, Goldring S. R, Herndon J. H, Shanbhag A. S. 2005; Gene expression clustering using self-organizing maps: analysis of the macrophage response to particulate biomaterials. Biomaterials26:2933–2945[CrossRef]
    [Google Scholar]
  13. Goehring N. W, Beckwith J. 2005; Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol15:R514–R526[CrossRef]
    [Google Scholar]
  14. Goehring N. W, Gueiros-Filho F, Beckwith J. 2005; Premature targeting of a cell division protein to midcell allows dissection of divisome assembly in Escherichia coli . Genes Dev19:127–137[CrossRef]
    [Google Scholar]
  15. Greendyke R, Rajagopalan M, Parish T, Madiraju M. V. 2002; Conditional expression of Mycobacterium smegmatis dnaA, an essential DNA replication gene. Microbiology148:3887–3900
    [Google Scholar]
  16. Harry E. J. 2001; Bacterial cell division: regulating Z-ring formation. Mol Microbiol40:795–803[CrossRef]
    [Google Scholar]
  17. Harry E. J, Rodwell J, Wake R. G. 1999; Co-ordinating DNA replication with cell division in bacteria: a link between the early stages of a round of replication and mid-cell Z ring assembly. Mol Microbiol33:33–40[CrossRef]
    [Google Scholar]
  18. Huang Q, Kirikae F, Kirikae T, Pepe A, Amin A, Respicio L, Slayden R. A, Tonge P. J, Ojima I. 2006; Targeting FtsZ for antituberculosis drug discovery: noncytotoxic taxanes as novel antituberculosis agents. J Med Chem49:463–466[CrossRef]
    [Google Scholar]
  19. Katis V. L, Harry E. J, Wake R. G. 1997; The Bacillus subtilis division protein DivIC is a highly abundant membrane-bound protein that localizes to the division site. Mol Microbiol26:1047–1055[CrossRef]
    [Google Scholar]
  20. Landgraf J. R, Wu J, Calvo J. M. 1996; Effects of nutrition and growth rate on Lrp levels in Escherichia coli . J Bacteriol178:6930–6936
    [Google Scholar]
  21. Laub M. T, McAdams H. H, Feldblyum T, Fraser C. M, Shapiro L. 2000; Global analysis of the genetic network controlling a bacterial cell cycle. Science290:2144–2148[CrossRef]
    [Google Scholar]
  22. Laub M. T, Chen S. L, Shapiro L, McAdams H. H. 2002; Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci U S A99:4632–4637[CrossRef]
    [Google Scholar]
  23. Lowe J, Amos L. A. 1998; Crystal structure of the bacterial cell-division protein FtsZ. Nature391:203–206[CrossRef]
    [Google Scholar]
  24. Mahapatra S, Basu J, Brennan P. J, Crick D. C. 2005; Structure, biosynthesis and genetics of the mycolic acid-arabinogalactan-peptidoglycan complex. In Tuberculosis and the Tubercle Bacillus pp 275–285 Edited by Cole S. T., Eisenach K. Davis, McMurray D. N., Jacobs W. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Manganelli R, Tyagi S, Smith I. 2001a; Real time PCR using molecular beacons. In Mycobacterium Tuberculosis Protocols pp 295–310 Edited by Parish T., Stoker N. G.. Totowa, NJ: Humana Press;
    [Google Scholar]
  26. Manganelli R, Voskuil M. I, Schoolnik G. K, Smith I. 2001b; The Mycobacterium tuberculosis ECF sigma factor sigmaE: role in global gene expression and survival in macrophages. Mol Microbiol41:423–437[CrossRef]
    [Google Scholar]
  27. Manganelli R, Voskuil M. I, Schoolnik G. K, Dubnau E, Gomez M, Smith I. 2002; Role of the extracytoplasmic-function sigma factor sigma(H) in Mycobacterium tuberculosis global gene expression. Mol Microbiol45:365–374[CrossRef]
    [Google Scholar]
  28. Manganelli R, Provvedi R, Rodrigue S, Beaucher J, Gaudreau L, Smith I. 2004; Sigma factors and global gene regulation in Mycobacterium tuberculosis . J Bacteriol186:895–902[CrossRef]
    [Google Scholar]
  29. Margalit D. N, Romberg L, Mets R. B, Hebert A. M, Mitchison T. J, Kirschner M. W, RayChaudhuri D. 2004; Targeting cell division: small-molecule inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality. Proc Natl Acad Sci U S A101:11821–11826[CrossRef]
    [Google Scholar]
  30. Margolin W. 2000; Themes and variations in prokaryotic cell division. FEMS Microbiol Rev24:531–548[CrossRef]
    [Google Scholar]
  31. Migocki M. D, Lewis P. J, Wake R. G, Harry E. J. 2004; The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events. Mol Microbiol54:452–463[CrossRef]
    [Google Scholar]
  32. Moker N, Brocker M, Schaffer S, Kramer R, Morbach S, Bott M. 2004; Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol Microbiol54:420–438[CrossRef]
    [Google Scholar]
  33. Mulder N. J, Apweiler R, Attwood T. K.37 other authors 2005; InterPro, progress and status in 2005. Nucleic Acids Res33:D201–D205[CrossRef]
    [Google Scholar]
  34. Nogales E, Downing K. H, Amos L. A, Lowe J. 1998; Tubulin and FtsZ form a distinct family of GTPases. Nat Struct Biol5:451–458[CrossRef]
    [Google Scholar]
  35. Pearson W. R, Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A85:2444–2448[CrossRef]
    [Google Scholar]
  36. Pogliano J, Pogliano K, Weiss D. S, Losick R, Beckwith J. 1997; Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites. Proc Natl Acad Sci U S A94:559–564[CrossRef]
    [Google Scholar]
  37. Rice P, Longden I, Bleasby A. 2000; emboss: the European Molecular Biology Open Software Suite. Trends Genet16:276–277[CrossRef]
    [Google Scholar]
  38. Romberg L, Levin P. A. 2003; Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. Annu Rev Microbiol57:125–154[CrossRef]
    [Google Scholar]
  39. Ryan K. R, Shapiro L. 2003; Temporal and spatial regulation in prokaryotic cell cycle progression and development. Annu Rev Biochem72:367–394[CrossRef]
    [Google Scholar]
  40. Salazar L, Guerrero E, Casart Y, Turcios L, Bartoli F. 2003; Transcription analysis of the dnaA gene and oriC region of the chromosome of Mycobacterium smegmatis and Mycobacterium bovis BCG, and its regulation by the DnaA protein. Microbiology149:773–784[CrossRef]
    [Google Scholar]
  41. Sherman D. R, Voskuil M, Schnappinger D, Liao R, Harrell M. I, Schoolnik G. K. 2001; Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc Natl Acad Sci U S A98:7534–7539[CrossRef]
    [Google Scholar]
  42. Slayden R. A, Lee R. E, Barry C. E., 3rd. 2000; Isoniazid affects multiple components of the type II fatty acid synthase system of Mycobacterium tuberculosis . Mol Microbiol38:514–525[CrossRef]
    [Google Scholar]
  43. Slayden R. A, Crick D, Neil M. M, Brennan P. J. 2003; Genomics in tuberculosis drug discovery. In The Role of Genomics in Antibacterial Drug Discovery pp 111–134 New York: Marcel Dekker;
    [Google Scholar]
  44. Voskuil M. I, Visconti K. C, Schoolnik G. K. 2004; Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis84:218–227[CrossRef]
    [Google Scholar]
  45. Wang D, Ressom H, Musavi M, Domnisoru C. 2002; Double self-organizing maps to cluster gene expression data. In ESANN-2002 Proceedings – European Symposium on Artificial Neural Networks, Bruges, (Belgium), 26 April 2002 pp. 45–50ISBN 2-930307-02.
    [Google Scholar]
  46. White E. L, Ross L. J, Reynolds R. C, Seitz L. E, Moore G. D, Borhani D. W. 2000; Slow polymerization of Mycobacterium tuberculosis FtsZ. J Bacteriol182:4028–4034[CrossRef]
    [Google Scholar]
  47. Wilson M, DeRisi J, Kristensen H.-K, Imboden P, Rane S, Brown P. O, Schoolnik G. K. 1999; Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci USA96:12833–12838[CrossRef]
    [Google Scholar]
  48. Xiao L, Wang K, Teng Y, Zhang J. 2003; Component plane presentation integrated self-organizing map for microarray data analysis. FEBS Lett538:117–124[CrossRef]
    [Google Scholar]
  49. Zahrt T. C, Deretic V. 2000; An essential two-component signal transduction system in Mycobacterium tuberculosis . J Bacteriol182:3832–3838[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28762-0
Loading
/content/journal/micro/10.1099/mic.0.28762-0
Loading

Data & Media loading...

Supplements

Table S1.Primer sequences and amplification constants. The total number of targets ( ) were calculated by the equation = + log( ) were is the threshold cycle obtained amplifying targets, is the intercept and is the slope of the standard curve.

PDF

Table S2. H37Rv complete dataset and SOM analysis after 5 hour treatment with FtsZ inhibitors (Student's -test <0.05).

PDF

Table S3.Discriminant genes of cell cycle processes.

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error