1887

Abstract

The genome of ATCC 25745 contains a gene cluster that resembles a regulated bacteriocin system. The gene cluster has an operon-like structure consisting of a putative pediocin-like bacteriocin gene (termed ) and a potential immunity gene (termed ). Genetic determinants involved in bacteriocin transport and regulation are also found in proximity to and but the so-called accessory gene involved in transport and the inducer gene involved in regulation are missing. Consequently, this bacterium is a poor bacteriocin producer. To analyse the potency of the putative bacteriocin operon, the two genes were heterologously expressed in a host that contains the complete apparatus for gene activation, maturation and externalization of bacteriocins. It was demonstrated that the heterologous host expressing and produced a strong bacteriocin activity; in addition, the host became immune to its own bacteriocin, identifying the gene pair as a potent bacteriocin system. The novel pediocin-like bacteriocin, termed penocin A, has an isotopic mass [M+H] of 4684.6 Da as determined by mass spectrometry; this value corresponds well to the expected size of the mature 42 aa peptide containing a disulfide bridge. The bacteriocin is heat-stable but protease-sensitive and has a calculated pI of 9.45. Penocin A has a relatively broad inhibition spectrum, including pathogenic and species. Immediately upstream of the regulatory genes reside some features that resemble remnants of a disrupted inducer gene. This degenerate gene was restored and shown to encode a double-glycine leader-containing peptide. Furthermore, expression of the restored gene triggered high bacteriocin production in ATCC 25745, thus confirming its role as an inducer in the regulon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28794-0
2006-06-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1649.html?itemId=/content/journal/micro/10.1099/mic.0.28794-0&mimeType=html&fmt=ahah

References

  1. Altermann E, Russell W. M, Azcarate-Peril M. A.11 other authors 2005; Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A102:3906–3912[CrossRef]
    [Google Scholar]
  2. Aukrust T, Nes I. F. 1988; Transformation of Lactobacillus plantarum with the plasmid pTV1 by electroporation. FEMS Microbiol Lett52:127–132[CrossRef]
    [Google Scholar]
  3. Axelsson L, Katla T, Bjornslett M, Eijsink V. G, Holck A. 1998; A system for heterologous expression of bacteriocins in Lactobacillus sake . FEMS Microbiol Lett168:137–143[CrossRef]
    [Google Scholar]
  4. Bauer R, Dicks L. M. 2005; Mode of action of lipid II-targeting lantibiotics. Int J Food Microbiol101:201–216[CrossRef]
    [Google Scholar]
  5. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich S. D, Sorokin A. 2001; The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res11:731–753[CrossRef]
    [Google Scholar]
  6. Bolotin A, Quinquis B, Renault P.20 other authors 2004; Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus . Nat Biotechnol22:1554–1558[CrossRef]
    [Google Scholar]
  7. Brurberg M. B, Nes I. F, Eijsink V. G. 1997; Pheromone-induced production of antimicrobial peptides in Lactobacillus . Mol Microbiol26:347–360[CrossRef]
    [Google Scholar]
  8. Caldwell S. L, McMahon D. J, Oberg C. J, Broadbent J. R. 1996; Development and characterization of lactose-positive Pediococcus species for milk fermentation. Appl Environ Microbiol63:936–941
    [Google Scholar]
  9. Chaillou S, Champomier-Verges M. C, Cornet M.8 other authors 2005; The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol23:1527–1533[CrossRef]
    [Google Scholar]
  10. Cintas L. M, Casaus P, Havarstein L. S, Hernandez P. E, Nes I. F. 1997; Biochemical and genetic characterization of enterocin P, a novel sec -dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol63:4321–4330
    [Google Scholar]
  11. Diep D. B, Nes I. F. 2002; Ribosomally synthesized antibacterial peptides in Gram positive bacteria. Curr Drug Targets3:107–122[CrossRef]
    [Google Scholar]
  12. Diep D. B, Havarstein L. S, Nes I. F. 1995; A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol18:631–639[CrossRef]
    [Google Scholar]
  13. Diep D. B, Havarstein L. S, Nes I. F. 1996; Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol178:4472–4483
    [Google Scholar]
  14. Diep D. B, Axelsson L, Grefsli C, Nes I. F. 2000; The synthesis of the bacteriocin sakacin A is a temperature-sensitive process regulated by a pheromone peptide through a three-component regulatory system. Microbiology146:2155–2160
    [Google Scholar]
  15. Diep D. B, Johnsborg O, Risoen P. A, Nes I. F. 2001; Evidence for dual functionality of the operon plnABCD in the regulation of bacteriocin production in Lactobacillus plantarum . Mol Microbiol41:633–644[CrossRef]
    [Google Scholar]
  16. Diep D. B, Myhre R, Johnsborg O, Aakra A, Nes I. F. 2003; Inducible bacteriocin production in Lactobacillus is regulated by differential expression of the pln operons and by two antagonizing response regulators, the activity of which is enhanced upon phosphorylation. Mol Microbiol47:483–494[CrossRef]
    [Google Scholar]
  17. Eijsink V. G, Skeie M, Middelhoven P. H, Brurberg M. B, Nes I. F. 1998; Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol64:3275–3281
    [Google Scholar]
  18. Eijsink V. G, Axelsson L, Diep D. B, Havarstein L. S, Holo H, Nes I. F. 2002; Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek81:639–654[CrossRef]
    [Google Scholar]
  19. Gravesen A, Ramnath M, Rechinger K. B, Andersen N, Jansch L, Hechard Y, Hastings J. W, Knochel S. 2002; High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes . Microbiology148:2361–2369
    [Google Scholar]
  20. Hauge H. H, Mantzilas D, Moll G. N, Konings W. N, Driessen A. J, Eijsink V. G, Nissen-Meyer J. 1998; Plantaricin A is an amphiphilic alpha-helical bacteriocin-like pheromone which exerts antimicrobial and pheromone activities through different mechanisms. Biochemistry37:16026–16032[CrossRef]
    [Google Scholar]
  21. Havarstein L. S, Holo H, Nes I. F. 1994; The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by Gram-positive bacteria. Microbiology140:2383–2389[CrossRef]
    [Google Scholar]
  22. Havarstein L. S, Diep D. B, Nes I. F. 1995; A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol16:229–240[CrossRef]
    [Google Scholar]
  23. Hechard Y, Sahl H. G. 2002; Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie84:545–557[CrossRef]
    [Google Scholar]
  24. Hechard Y, Pelletier C, Cenatiempo Y, Frere J. 2001; Analysis of σ [sup]54[/sup]-dependent genes in Enterococcus faecalis : a mannose PTS permease (EII[sub]Man[/sub]) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology147:1575–1580
    [Google Scholar]
  25. Holo H, Nilssen O, Nes I. F. 1991; Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris : isolation and characterization of the protein and its gene. J Bacteriol173:3879–3887
    [Google Scholar]
  26. Horn N, Martinez M. I, Martinez J. M, Hernandez P. E, Gasson M. J, Rodriguez J. M, Dodd H. M. 1998; Production of pediocin PA-1 by Lactococcus lactis using the lactococcin A secretory apparatus. Appl Environ Microbiol64:818–823
    [Google Scholar]
  27. Horn N, Martinez M. I, Martinez J. M, Hernandez P. E, Gasson M. J, Rodriguez J. M, Dodd H. M. 1999; Enhanced production of pediocin PA-1 and coproduction of nisin and pediocin PA-1 by Lactococcus lactis . Appl Environ Microbiol65:4443–4450
    [Google Scholar]
  28. Jack R. W, Tagg J. R, Ray B. 1995; Bacteriocins of Gram-positive bacteria. Microbiol Rev59:171–200
    [Google Scholar]
  29. Klaenhammer T. R. 1993; Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev12:39–85[CrossRef]
    [Google Scholar]
  30. Kleerebezem M, Quadri L. E. 2001; Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides22:1579–1596[CrossRef]
    [Google Scholar]
  31. Kleerebezem M, Kuipers O. P, de Vos W. M. 1999; The lantibiotics nisin and subtilin act as extracellular regulators of their own biosynthesis. In Cell-Cell Signaling in Bacteria pp 159–174 Edited by Dunny G. M., Winans S. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  32. Kleerebezem M, Boekhorst J, van Kranenburg R. 17 other authors 2003; Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A100:1990–1995[CrossRef]
    [Google Scholar]
  33. Kuipers O. P, Beerthuyzen M. M, Siezen R. J, De Vos W. M. 1993; Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis . Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem216:281–291[CrossRef]
    [Google Scholar]
  34. Marugg J. D, Gonzalez C. F, Kunka B. S, Ledeboer A. M, Pucci M. J, Toonen M. Y, Walker S. A, Zoetmulder L. C, Vandenbergh P. A. 1992; Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol58:2360–2367
    [Google Scholar]
  35. Møretrø T, Naterstad K, Wang E, Aasen I. M, Chaillou S, Zagorec M, Axelsson L. 2005; Sakacin P non-producing Lactobacillus sakei strains contain homologues of the sakacin P gene cluster. Res Microbiol156:949–960[CrossRef]
    [Google Scholar]
  36. Nes I. F, Diep D. B, Havarstein L. S, Brurberg M. B, Eijsink V, Holo H. 1996; Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek70:113–128[CrossRef]
    [Google Scholar]
  37. Pridmore R. D, Berger B, Desiere F.12 other authors 2004; The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A24:2512–2517
    [Google Scholar]
  38. Riley M. A, Wertz J. E. 2002; Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol56:117–137[CrossRef]
    [Google Scholar]
  39. Risoen P. A, Havarstein L. S, Diep D. B, Nes I. F. 1998; Identification of the DNA-binding sites for two response regulators involved in control of bacteriocin synthesis in Lactobacillus plantarum C11. Mol Gen Genet259:224–232
    [Google Scholar]
  40. Risoen P. A, Brurberg M. B, Eijsink V. G, Nes I. F. 2000; Functional analysis of promoters involved in quorum sensing-based regulation of bacteriocin production in Lactobacillus . Mol Microbiol37:619–628
    [Google Scholar]
  41. Risoen P. A, Johnsborg O, Diep D. B, Hamoen L, Venema G, Nes I. F. 2001; Regulation of bacteriocin production in Lactobacillus plantarum depends on a conserved promoter arrangement with consensus binding sequence. Mol Genet Genomics265:198–206[CrossRef]
    [Google Scholar]
  42. Sablon E, Contreras B, Vandamme E. 2000; Antimicrobial peptides of lactic acid bacteria: mode of action, genetics and biosynthesis. Adv Biochem Eng Biotechnol68:21–60
    [Google Scholar]
  43. Saxelin M, Tynkkynen S, Mattila-Sandholm T, de Vos W. M. 2005; Probiotic and other functional microbes: from markets to mechanisms. Curr Opin Biotechnol16:204–211[CrossRef]
    [Google Scholar]
  44. Stevens K. A, Sheldon B. W, Klapes N. A, Klaenhammer T. R. 1991; Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Appl Environ Microbiol57:3613–3615
    [Google Scholar]
  45. Stoddard G. W, Petzel J. P, Kok J, McKay L. L, van Belkum M. J. 1992; Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl Environ Microbiol58:1952–1961
    [Google Scholar]
  46. van Belkum M. J., Stiles M. E. 1995; Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum . Appl Environ Microbiol61:3573–3579
    [Google Scholar]
  47. van Belkum M. J, Worobo R. W, Stiles M. E. 1997; Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis . Mol Microbiol23:1293–1301[CrossRef]
    [Google Scholar]
  48. van de Guchte M, van der Vossen J. M, Kok J, Venema G. 1989; Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis . Appl Environ Microbiol55:224–228
    [Google Scholar]
  49. Vaughan A, Eijsink V. G, Van Sinderen D. 2003; Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Appl Environ Microbiol69:7194–7203[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28794-0
Loading
/content/journal/micro/10.1099/mic.0.28794-0
Loading

Data & Media loading...

Supplements

Primers used in this study [PDF](10 kb) A comparison of inhibitory spectra of four different pediocin-like bacteriocins [PDF](25 kb)

PDF

Primers used in this study [PDF](10 kb) A comparison of inhibitory spectra of four different pediocin-like bacteriocins [PDF](25 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error