1887

Abstract

The effectiveness of solar disinfection (SODIS), a low-cost household water treatment method for developing countries, was investigated with flow cytometry and viability stains for the enteric bacterium . A better understanding of the process of injury or death of during SODIS could be gained by investigating six different cellular functions, namely: efflux pump activity (Syto 9 plus ethidium bromide), membrane potential [bis-(1,3-dibutylbarbituric acid)trimethine oxonol; DiBAC(3)], membrane integrity (LIVE/DEAD BacLight), glucose uptake activity (2-[-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy--glucose; 2-NBDG), total ATP concentration (BacTiter-Glo) and culturability (pour-plate method). These variables were measured in K-12 MG1655 cells that were exposed to either sunlight or artificial UVA light. The inactivation pattern of cellular functions was very similar for both light sources. A UVA light dose (fluence) of <500 kJ m was enough to lower the proton motive force, such that efflux pump activity and ATP synthesis decreased significantly. The loss of membrane potential, glucose uptake activity and culturability of >80 % of the cells was observed at a fluence of ∼1500 kJ m, and the cytoplasmic membrane of bacterial cells became permeable at a fluence of >2500 kJ m. Culturable counts of stressed bacteria after anaerobic incubation on sodium pyruvate-supplemented tryptic soy agar closely correlated with the loss of membrane potential. The results strongly suggest that cells exposed to >1500 kJ m solar UVA (corresponding to 530 W m global sunlight intensity for 6 h) were no longer able to repair the damage and recover. Our study confirms the lethal effect of SODIS with cultivation-independent methods and gives a detailed picture of the ‘agony’ of when it is stressed with sunlight.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28617-0
2006-06-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1719.html?itemId=/content/journal/micro/10.1099/mic.0.28617-0&mimeType=html&fmt=ahah

References

  1. Acra, A., Raffoul, Z. & Karahagopian, Y. ( 1984; ). Solar Disinfection of Drinking Water and Oral Rehydration Solutions. New York: United Nations Children's Fund.
  2. Aldsworth, T. G., Sharman, R. L. & Dodd, C. E. ( 1999; ). Bacterial suicide through stress. Cell Mol Life Sci 56, 378–383.[CrossRef]
    [Google Scholar]
  3. Arami, S., Hada, M. & Tada, M. ( 1997a; ). Reduction of ATPase activity accompanied by photodecomposition of ergosterol by near-UV irradiation in plasma membranes prepared from Saccharomyces cerevisiae. Microbiology 143, 2465–2471.[CrossRef]
    [Google Scholar]
  4. Arami, S., Hada, M. & Tada, M. ( 1997b; ). Near-UV-induced absorbance change and photochemical decomposition of ergosterol in the plasma membrane of the yeast Saccharomyces cerevisiae. Microbiology 143, 1665–1671.[CrossRef]
    [Google Scholar]
  5. Barer, M. R. & Harwood, C. R. ( 1999; ). Bacterial viablility and culturability. Adv Microb Physiol 41, 93–137.
    [Google Scholar]
  6. Berney, M., Weilenmann, H., Ihssen, J., Bassin, C. & Egli, T. ( 2006; ). Specific growth rate determines the sensitivity of E. coli to thermal, UVA and solar disinfection. Appl Environ Microbiol 72, 2586–2593.[CrossRef]
    [Google Scholar]
  7. Bromberg, R., George, S. M. & Peck, W. ( 1998; ). Oxygen sensitivity of heated cells of Escherichia coli O157:H7. J Appl Microbiol 85, 231–237.[CrossRef]
    [Google Scholar]
  8. Colwell, R. R. ( 2000; ). Viable but nonculturable bacteria: a survival strategy. J Infect Chemother 6, 121–125.[CrossRef]
    [Google Scholar]
  9. Czechowicz, S. M., Santos, O. & Zottola, E. A. ( 1996; ). Recovery of thermally-stressed Escherichia coli O157:H7 by media supplemented with pyruvate. Int J Food Microbiol 33, 275–284.[CrossRef]
    [Google Scholar]
  10. Dodd, C. E. R., Sharman, R. L., Bloomfield, S. F., Booth, I. R. & Stewart, G. S. A. B. ( 1997; ). Inimical processes: bacterial self-destruction and sub-lethal injury. Trends Food Sci Tech 8, 238–241.[CrossRef]
    [Google Scholar]
  11. Downes, A. ( 1886; ). On the action of sunlight on micro-organisms, &c., with a demonstration of the influence of diffused light. Proc R Soc 40, 14–22.[CrossRef]
    [Google Scholar]
  12. Fewtrell, L., Kaufmann, R. B., Kay, D., Enanoria, W., Haller, L. & Colford, J. M., Jr ( 2005; ). Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: a systematic review and meta-analysis. Lancet Infect Dis 5, 42–52.[CrossRef]
    [Google Scholar]
  13. George, S. M., Richardson, L. C., Pol, I. E. & Peck, M. W. ( 1998; ). Effect of oxygen concentration and redox potential on recovery of sublethally heat-damaged cells of Escherichia coli O157:H7, Salmonella enteritidis and Listeria monocytogenes. J Appl Microbiol 84, 903–909.[CrossRef]
    [Google Scholar]
  14. Haugland, R. P. ( 2002; ). Handbook of Fluorescent Probes and Research Products, 9th edn. Edited by J. Gregory. Eugene, OR: Molecular Probes.
  15. Hewitt, C. J. & Nebe-Von-Caron, G. ( 2004; ). The application of multi-parameter flow cytometry to monitor individual microbial cell physiological state. Adv Biochem Eng Biotechnol 89, 197–223.
    [Google Scholar]
  16. Hewitt, C. J., Nebe-Von Caron, G., Nienow, A. W. & McFarlane, C. M. ( 1999; ). Use of multi-staining flow cytometry to characterise the physiological state of Escherichia coli W3110 in high cell density fed-batch cultures. Biotechnol Bioeng 63, 705–711.[CrossRef]
    [Google Scholar]
  17. Hinrichsen, D., Bryant Robey, M. A. & Upadhyay, U. D. ( 1997; ). Solutions for a Water-Short World. Population Reports. Baltimore: Johns Hopkins School of Public Health. (http://www.infoforhealth.org/pr/m14edsum.shtml)
  18. Hobbins, M. ( 2004; ). Home-based water purification through sunlight: from promotion to health effectiveness. Doctoral thesis. Swiss Tropical Institute, University of Basel.
  19. Jagger, J. ( 1981; ). Near-UV radiation effects on microorganisms. Photochem Photobiol 34, 761–768.[CrossRef]
    [Google Scholar]
  20. Joyce, T. M., McGuigan, K. G., Elmore-Meegan, M. & Conroy, R. M. ( 1996; ). Inactivation of fecal bacteria in drinking water by solar heating. Appl Environ Microbiol 62, 399–402.
    [Google Scholar]
  21. Kaprelyants, A. S. & Kell, D. B. ( 1993; ). Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl Environ Microbiol 59, 3187–3196.
    [Google Scholar]
  22. Khaengraeng, R. & Reed, R. H. ( 2005; ). Oxygen and photoinactivation of Escherichia coli in UVA and sunlight. J Appl Microbiol 99, 39–50.[CrossRef]
    [Google Scholar]
  23. Kobayashi, H., Miyamoto, T., Hashimoto, Y., Kiriki, M., Motomatsu, A., Honjoh, K. & Iio, M. ( 2005; ). Identification of factors involved in recovery of heat-injured Salmonella enteritidis. J Food Prot 68, 932–941.
    [Google Scholar]
  24. Lakchaura, B. D., Fossum, T. & Jagger, J. ( 1976; ). Inactivation of adenosine 5′-triphosphate synthesis and reduced-form nicotinamide adenine dinucleotide dehydrogenase activity in Escherichia coli by near-ultraviolet and violet radiations. J Bacteriol 125, 111–118.
    [Google Scholar]
  25. Lonnen, J., Kilvington, S., Kehoe, S. C., Al-Touati, F. & McGuigan, K. G. ( 2005; ). Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res 39, 877–883.[CrossRef]
    [Google Scholar]
  26. Martin-Dominguez, A., Alarcon-Herrera, M. T., Martin-Dominguez, I. R. & Gonzalez-Herrera, A. ( 2005; ). Efficiency in the disinfection of water for human consumption in rural communities using solar radiation. Solar Energy 78, 31–40.[CrossRef]
    [Google Scholar]
  27. Midgley, M. ( 1987; ). An efflux system for cationic dyes and related compounds in Escherichia coli. Microbiol Sci 4, 125–127.
    [Google Scholar]
  28. Miller, J. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  29. Mukamolova, G. V., Yanopolskaya, N. D., Kell, D. B. & Kaprelyants, A. S. ( 1998; ). On resuscitation from the dormant state of Micrococcus luteus. Antonie Van Leeuwenhoek 73, 237–243.[CrossRef]
    [Google Scholar]
  30. Natarajan, A. & Srienc, F. ( 1999; ). Dynamics of glucose uptake by single Escherichia coli cells. Metab Eng 1, 320–333.[CrossRef]
    [Google Scholar]
  31. Natarajan, A. & Srienc, F. ( 2000; ). Glucose uptake rates of single E. coli cells grown in glucose-limited chemostat cultures. J Microbiol Methods 42, 87–96.[CrossRef]
    [Google Scholar]
  32. Nebe-von-Caron, G., Stephens, P. J., Hewitt, C. J., Powell, J. R. & Badley, R. A. ( 2000; ). Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. J Microbiol Methods 42, 97–114.[CrossRef]
    [Google Scholar]
  33. Nystrom, T. ( 2001; ). Not quite dead enough: on bacterial life, culturability, senescence, and death. Arch Microbiol 176, 159–164.[CrossRef]
    [Google Scholar]
  34. Porter, J., Deere, D., Hardman, M., Edwards, C. & Pickup, R. ( 1997; ). Go with the flow cytometry in environmental microbiology. FEMS Microbiol Ecol 24, 93–101.[CrossRef]
    [Google Scholar]
  35. Postgate, J. R. ( 1967; ). Viability measurements and the survival of microbes under minimum stress. Adv Microb Physiol 1, 2–23.
    [Google Scholar]
  36. Postgate, J. R. ( 1989; ). A microbial way of death. New Scientist 122, 43–47.
    [Google Scholar]
  37. Postgate, J. R. & Hunter, J. R. ( 1964; ). Accelerated death of Aerobacter aerogenes starved in the presence of growth-limiting substrates. J Gen Microbiol 34, 459–473.[CrossRef]
    [Google Scholar]
  38. Reed, R. H. ( 1997; ). Solar inactivation of faecal bacteria in water: the critical role of oxygen. Lett Appl Microbiol 24, 276–280.[CrossRef]
    [Google Scholar]
  39. Smith, R. J., Kehoe, S. C., McGuigan, K. G. & Barer, M. R. ( 2000; ). Effects of simulated solar disinfection of water on infectivity of Salmonella typhimurium. Lett Appl Microbiol 31, 284–288.[CrossRef]
    [Google Scholar]
  40. Wegelin, M., Canonica, S., Mechsner, K., Fleischmann, T., Pesaro, F. & Metzler, A. ( 1994; ). Solar water disinfection: scope of the process and anlysis of radiation experiments. J Water SRT-Aqua 43, 154–169.
    [Google Scholar]
  41. White, D. ( 1995; ). The Physiology and Biochemistry of Procaryotes. New York: Oxford University Press.
  42. World Health Organization ( 1996; ). Guidelines for Drinking-Water Quality, vol. 2, Health Criteria and Other Supporting Information, 2nd edn. Geneva: World Health Organization.
  43. World Health Organization/United World Nations Children's Fund ( 2005; ). Water for Life: Making it Happen. Geneva: World Health Organization.
  44. Yoshioka, K., Saito, M., Oh, K. B., Nemoto, Y., Matsuoka, H., Natsume, M. & Abe, H. ( 1996; ). Intracellular fate of 2-NBDG, a fluorescent probe for glucose uptake activity, in Escherichia coli cells. Biosci Biotechnol Biochem 60, 1899–1901.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28617-0
Loading
/content/journal/micro/10.1099/mic.0.28617-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error