-
Volume 152,
Issue 6,
2006
Volume 152, Issue 6, 2006
- Pathogens And Pathogenicity
-
-
-
Asymptomatic bacteriuria Escherichia coli strain 83972 carries mutations in the foc locus and is unable to express F1C fimbriae
More LessEscherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU). In contrast to uropathogenic E. coli (UPEC), which causes symptomatic urinary tract infection (UTI), very little is known about the mechanisms by which these strains colonize the urinary tract. Bacterial adhesion conferred by specific surface-associated adhesins is normally considered as a prerequisite for colonization of the urinary tract. The prototype ABU E. coli strain 83972 was originally isolated from a girl who had carried it asymptomatically for 3 years. This study characterized the molecular status of one of the primary adhesion factors known to be associated with UTI, namely F1C fimbriae, encoded by the foc gene cluster. F1C fimbriae recognize receptors present in the human kidney and bladder. Expression of the foc genes was found to be up-regulated in human urine. It was also shown that although strain 83972 contains a seemingly intact foc gene cluster, F1C fimbriae are not expressed. Sequencing and genetic complementation revealed that the focD gene, encoding a component of the F1C transport and assembly system, was non-functional, explaining the inability of strain 83972 to express this adhesin. The data imply that E. coli 83972 has lost its ability to express this important colonization factor as a result of host-driven evolution. The ancestor of the strain seems to have been a pyelonephritis strain of phylogenetic group B2. Strain 83972 therefore represents an example of bacterial adaptation from pathogenicity to commensalism through virulence factor loss.
-
-
-
-
The ionic interaction of Klebsiella pneumoniae K2 capsule and core lipopolysaccharide
The complete structures of LPS core types 1 and 2 from Klebsiella pneumoniae have been described by other authors. They are characterized by a lack of phosphoryl residues, but they contain galacturonic acid (GalA) residues, which contribute to the necessary negative charges. The presence of a capsule was determined in core-LPS non-polar mutants from strains 52145 (O1 : K2), DL1 (O1 : K1) and C3 (O8 : K66). O-antigen ligase (waaL) mutants produced a capsule. Core mutants containing the GalA residues were capsulated, while those lacking the residues were non capsulated. Since the proteins involved in the transfer of GalA (WabG) and glucosamine residues (WabH) are known, the chemical basis of the capsular-K2–cell-surface association was studied. Phenol/water extracts from K. pneumoniae 52145ΔwabH waaL and 52145ΔwaaL mutants, but not those from from K. pneumoniae 52145ΔwabG waaL mutant, contained both LPS and capsular polysaccharide, even after hydrophobic chromatography. The two polysaccharides were dissociated by gel-filtration chromatography, eluting with detergent and metal-ion chelators. From these results, it is concluded that the K2 capsular polysaccharide is associated by an ionic interaction to the LPS through the negative charge provided by the carboxyl groups of the GalA residues.
-
-
-
Staphylococcus aureus adheres to human intestinal mucus but can be displaced by certain lactic acid bacteria
More LessThere is increasing evidence that Staphylococcus aureus may colonize the intestinal tract, especially among hospitalized patients. As Staph. aureus has been found to be associated with certain gastrointestinal diseases, it has become important to study whether this bacterium can colonize the intestinal tract and if so, whether it is possible to prevent colonization. Adhesion is the first step in colonization; this study shows that Staph. aureus adheres to mucus from resected human intestinal tissue. Certain lactic acid bacteria (LAB), mainly commercial probiotics, were able to reduce adhesion and viability of adherent Staph. aureus. In displacement assays the amount of adherent Staph. aureus in human intestinal mucus was reduced 39–44 % by Lactobacillus rhamnosus GG, Lactococcus lactis subsp. lactis and Propionibacterium freudenreichii subsp. shermanii. Moreover, adherent Lactobacillus reuteri, Lc. lactis and P. freudenreichii reduced viability of adherent Staph. aureus by 27–36 %, depending on the strain, after 2 h incubation. This was probably due to the production of organic acids and hydrogen peroxide and possibly in the case of L. reuteri to the production of reuterin. This study shows for the first time that Staph. aureus can adhere to human intestinal mucus and adherent bacteria can be displaced and killed by certain LAB strains via in situ production of antimicrobial substances.
-
-
-
Contributions of Listeria monocytogenes σ B and PrfA to expression of virulence and stress response genes during extra- and intracellular growth
More LessListeria monocytogenes σ B and PrfA are pleiotropic regulators of stress response and virulence gene expression. Quantitative RT-PCR (qRT-PCR) was used to measure transcript levels of σ B- and PrfA-dependent genes in exponential-phase L. monocytogenes wild-type and ΔsigB strains as well as in bacteria exposed to environmental stresses (0.3 M NaCl or growth to stationary phase) or present in the vacuole or cytosol of human intestinal epithelial cells. Stationary-phase or NaCl-exposed L. monocytogenes showed σ B-dependent increases in opuCA (10- and 17-fold higher, respectively) and gadA transcript levels (77- and 14-fold higher, respectively) as compared to non-stressed, exponential-phase bacteria. While PrfA activity, as reflected by plcA transcript levels, was up to 95-fold higher in intracellular L. monocytogenes as compared to non-stressed bacteria, σ B activity was only slightly higher in intracellular than in non-stressed bacteria. Increased plcA transcript levels, which were similar in both host cell vacuole and cytosol, were associated with increases in both prfA expression and PrfA activity. qRT-PCR assays were designed to measure expression of prfA from each of its three promoter regions. Under all conditions, readthrough transcription from the upstream plcA promoter was very low. The relative contribution to total prfA transcription from the σ A-dependent P1prfA promoter ranged from ∼17 % to 30 %, while the contribution of the P2prfA region, which appears to be transcribed by both σ A and σ B, ranged from ∼70 % to 82 % of total prfA transcript levels. In summary (i) σ B is primarily activated during environmental stress and does not contribute to PrfA activation in intracellular L. monocytogenes and (ii) the partially σ B-dependent P2prfA promoter region contributes the majority of prfA transcripts in both intra- and extracellular bacteria.
-
-
-
The HA2 haemagglutinin domain of the lysine-specific gingipain (Kgp) of Porphyromonas gingivalis promotes μ-oxo bishaem formation from monomeric iron(III) protoporphyrin IX
More LessThe lysine- and arginine-specific gingipains (Kgp, and RgpA and RgpB) are the major proteinases produced by the black-pigmented periodontopathogen Porphyromonas gingivalis. They play a role in degrading host proteins, including haemoglobin, from which is formed the μ-oxo bishaem complex of iron(III) protoporphyrin IX, [Fe(III)PPIX]2O, the major haem component of the black pigment. Kgp and RgpA bind haem and haemoglobin via the haemagglutinin-adhesin 2 (HA2) domain, but the role of this domain in the formation of μ-oxo bishaem-containing pigment is not known. UV-visible spectroscopy was used to examine the interaction of iron(III) protoporphyrin IX monomers [Fe(III)PPIX.OH] with recombinant HA2 and purified HRgpA, Kgp and RgpB gingipains. The HA2 domain reacted with Fe(III)PPIX.OH to form μ-oxo bishaem, the presence of which was confirmed by Fourier transform infrared spectroscopy. Both HRgpA and Kgp, but not RgpB, also mediated μ-oxo bishaem formation and aggregation. It is concluded that the Arg- and Lys-gingipains with HA2 haemagglutinin domains may play a crucial role in haem-pigment formation by converting Fe(III)PPIX.OH monomers into [Fe(III)PPIX]2O and promoting their aggregation.
-
-
-
Contribution of the type III secretion system (TTSS) to virulence of Aeromonas salmonicida subsp. salmonicida
The recently described type III secretion system (TTSS) of Aeromonas salmonicida subsp. salmonicida has been linked to virulence in salmonids. In this study, three TTSS effector genes, aexT, aopH or aopO, were inactivated by deletion, as was ascC, the gene encoding the outer-membrane pore of the secretion apparatus. Effects on virulence were assayed by live challenge of Atlantic salmon (Salmo salar). The ΔascC mutant strain was avirulent by both intraperitoneal (i.p.) injection and immersion, did not appear to establish a clinically inapparent infection and did not confer protection from subsequent rechallenge with the parental strain. 1H NMR spectroscopy-based metabolite profiling of plasma from all fish showed significant differences in the metabolite profiles between the animals exposed to the parental strain or ΔascC. The experimental infection by immersion with ΔaopO was indistinguishable from that of the parental strain, that of ΔaexT was delayed, whilst the virulence of ΔaopH was reduced significantly but not abolished. By i.p. injection, ΔaexT, ΔaopH and ΔaopO caused an experimental disease indistinguishable from that of the parental strain. These data demonstrate that while the TTSS is absolutely essential for virulence of A. salmonicida subsp. salmonicida in Atlantic salmon, removal of individual effectors has little influence on virulence but has a significant effect on colonization. The ΔascC i.p. injection data also suggest that in addition to host invasion there is a second step in A. salmonicida pathogenesis that requires an active TTSS.
-
- Physiology
-
-
-
The response regulator PhoP4 is required for late developmental events in Myxococcus xanthus
Phosphate regulation is complex in the developmental prokaryote Myxococcus xanthus, and requires at least four two-component systems (TCSs). Here, the identification and characterization of a member of one TCS, designated PhoP4, is reported. phoP4 insertion and in-frame deletion strains caused spore viability to be decreased by nearly two orders of magnitude, and reduced all three development-specific phosphatase activities by 80–90 % under phosphate-limiting conditions. Microarray and quantitative PCR analyses demonstrated that PhoP4 is also required for appropriate expression of the predicted pstSCAB–phoU operon of inorganic phosphate assimilation genes. Unlike the case for the other three M. xanthus Pho TCSs, the chromosomal region around phoP4 does not contain a partner histidine kinase gene. Yeast two-hybrid analyses reveal that PhoP4 interacts reciprocally with PhoR2, the histidine kinase of the Pho2 TCS; however, the existence of certain phenotypic differences between phoP4 and phoR2 mutants suggests that PhoP4 interacts with another, as-yet unidentified, histidine kinase.
-
-
-
-
Subcellular localization of glyoxylate cycle key enzymes involved in oxalate biosynthesis of wood-destroying basidiomycete Fomitopsis palustris grown on glucose
This study investigated the subcellular localization of key enzymes of the glyoxylate cycle, i.e. isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (EC 2.3.3.9), that function constitutively in coordination with oxalate biosynthesis of glucose-grown Fomitopsis palustris. The ICL purified previously from F. palustris is termed FPICL1. Subcellular fractionation analysis of the cell homogenate by the sucrose density-gradient method showed that both key enzymes were present in peroxisomes, whereas acetyl-CoA synthase (EC 6.2.1.1) and oxalate-producing oxaloacetate acetylhydrolase (EC 3.7.1.1) were cytosolic. The peroxisomal localization of FPICL1 was further confirmed by electron microscopic and immunocytochemical analysis with anti-FPICL1 antibody. In addition, the peroxisomal target signal, composed of SKL at the C terminus of the cDNA encoding FPICL1, was found, which also suggests that FPICL1 is peroxisomal. Accordingly, it is postulated that transportation of succinate from peroxisomes to mitochondria, and vice versa, for the transportation of isocitrate or citrate, occurs in glucose-grown F. palustris for the constitutive metabolic coordination of the TCA and glyoxylate cycles with oxalate biosynthesis.
-
- Plant-Microbe Interactions
-
-
-
The histidine utilization (hut) genes of Pseudomonas fluorescens SBW25 are active on plant surfaces, but are not required for competitive colonization of sugar beet seedlings
More LessThe ability to monitor the spatial and temporal distribution of signals in complex environments is necessary for an understanding of the function of bacteria in the wild. To this end, an existing recombinase-based transcriptional reporter strategy (recombinase-based in vivo expression technology, RIVET) has been extended and applied to the plant-colonizing bacterium Pseudomonas fluorescens SBW25. Central to the project was a rhizosphere-inducible locus, rhi14, which functional analyses show is hutT, a histidine-inducible gene that is required for histidine utilization. A transcriptional fusion between hutT and a promoterless site-specific recombinase (tnpR mut168) results in excision of a chromosomally integrated tetracycline-resistance cassette in a histidine-dependent manner. The dose- and time-responsiveness of the promoterless recombinase to histidine closely mirrored the histidine responsiveness of an identical hutT fusion to promoterless lacZ. To demonstrate the effectiveness of the strategy, the activity of hutT was monitored on sugar beet seedlings. Low levels of transcriptional activity were detected in the phyllosphere, rhizosphere and in plant extract, but not in vermiculite devoid of seedlings. The histidine concentration in the rhizosphere was estimated to be 0.6 μg ml−1. The ecological significance of the hut locus was examined by competing a hutT deletion mutant against the wild-type during colonization of sugar beet seedlings. No impact on competitive fitness was detected, suggesting that the ability to utilize plant-derived histidine is not essential for bacterial colonization.
-
-
-
-
Genomic analysis of host–pathogen interaction between Fusarium graminearum and wheat during early stages of disease development
More LessFusarium graminearum strains responsible for causing the plant disease Fusarium head blight vary greatly in their ability to cause disease and produce mycotoxins on wheat. With the goal of understanding fungal gene expression related to pathogenicity, three cDNA libraries were created by suppression subtractive hybridization using wheat heads inoculated with a highly aggressive strain and either water or a less aggressive strain of this pathogen. Eighty-four fungal genes expressed during initial disease development were identified. The probable functions of 49 of these genes could be inferred by bioinformatic analysis. Thirty-five ESTs had no known homologues in current databases and were not identified by ab initio gene prediction methods. These ESTs from infected wheat heads probably represent F. graminearum genes that previously were not annotated. Four genes represented in one of these libraries were selected for targeted gene replacement, leading to the characterization of a two-component response regulator homologue involved in pathogenicity of the fungus. The mutants for this gene showed reduced sporulation and delayed spread of Fusarium head blight on wheat.
-
Volumes and issues
-
Volume 169 (2023)
-
Volume 168 (2022)
-
Volume 167 (2021)
-
Volume 166 (2020)
-
Volume 165 (2019)
-
Volume 164 (2018)
-
Volume 163 (2017)
-
Volume 162 (2016)
-
Volume 161 (2015)
-
Volume 160 (2014)
-
Volume 159 (2013)
-
Volume 158 (2012)
-
Volume 157 (2011)
-
Volume 156 (2010)
-
Volume 155 (2009)
-
Volume 154 (2008)
-
Volume 153 (2007)
-
Volume 152 (2006)
-
Volume 151 (2005)
-
Volume 150 (2004)
-
Volume 149 (2003)
-
Volume 148 (2002)
-
Volume 147 (2001)
-
Volume 146 (2000)
-
Volume 145 (1999)
-
Volume 144 (1998)
-
Volume 143 (1997)
-
Volume 142 (1996)
-
Volume 141 (1995)
-
Volume 140 (1994)
-
Volume 139 (1993)
-
Volume 138 (1992)
-
Volume 137 (1991)
-
Volume 136 (1990)
-
Volume 135 (1989)
-
Volume 134 (1988)
-
Volume 133 (1987)
-
Volume 132 (1986)
-
Volume 131 (1985)
-
Volume 130 (1984)
-
Volume 129 (1983)
-
Volume 128 (1982)
-
Volume 127 (1981)
-
Volume 126 (1981)
-
Volume 125 (1981)
-
Volume 124 (1981)
-
Volume 123 (1981)
-
Volume 122 (1981)
-
Volume 121 (1980)
-
Volume 120 (1980)
-
Volume 119 (1980)
-
Volume 118 (1980)
-
Volume 117 (1980)
-
Volume 116 (1980)
-
Volume 115 (1979)
-
Volume 114 (1979)
-
Volume 113 (1979)
-
Volume 112 (1979)
-
Volume 111 (1979)
-
Volume 110 (1979)
-
Volume 109 (1978)
-
Volume 108 (1978)
-
Volume 107 (1978)
-
Volume 106 (1978)
-
Volume 105 (1978)
-
Volume 104 (1978)
-
Volume 103 (1977)
-
Volume 102 (1977)
-
Volume 101 (1977)
-
Volume 100 (1977)
-
Volume 99 (1977)
-
Volume 98 (1977)
-
Volume 97 (1976)
-
Volume 96 (1976)
-
Volume 95 (1976)
-
Volume 94 (1976)
-
Volume 93 (1976)
-
Volume 92 (1976)
-
Volume 91 (1975)
-
Volume 90 (1975)
-
Volume 89 (1975)
-
Volume 88 (1975)
-
Volume 87 (1975)
-
Volume 86 (1975)
-
Volume 85 (1974)
-
Volume 84 (1974)
-
Volume 83 (1974)
-
Volume 82 (1974)
-
Volume 81 (1974)
-
Volume 80 (1974)
-
Volume 79 (1973)
-
Volume 78 (1973)
-
Volume 77 (1973)
-
Volume 76 (1973)
-
Volume 75 (1973)
-
Volume 74 (1973)
-
Volume 73 (1972)
-
Volume 72 (1972)
-
Volume 71 (1972)
-
Volume 70 (1972)
-
Volume 69 (1971)
-
Volume 68 (1971)
-
Volume 67 (1971)
-
Volume 66 (1971)
-
Volume 65 (1971)
-
Volume 64 (1970)
-
Volume 63 (1970)
-
Volume 62 (1970)
-
Volume 61 (1970)
-
Volume 60 (1970)
-
Volume 59 (1969)
-
Volume 58 (1969)
-
Volume 57 (1969)
-
Volume 56 (1969)
-
Volume 55 (1969)
-
Volume 54 (1968)
-
Volume 53 (1968)
-
Volume 52 (1968)
-
Volume 51 (1968)
-
Volume 50 (1968)
-
Volume 49 (1967)
-
Volume 48 (1967)
-
Volume 47 (1967)
-
Volume 46 (1967)
-
Volume 45 (1966)
-
Volume 44 (1966)
-
Volume 43 (1966)
-
Volume 42 (1966)
-
Volume 41 (1965)
-
Volume 40 (1965)
-
Volume 39 (1965)
-
Volume 38 (1965)
-
Volume 37 (1964)
-
Volume 36 (1964)
-
Volume 35 (1964)
-
Volume 34 (1964)
-
Volume 33 (1963)
-
Volume 32 (1963)
-
Volume 31 (1963)
-
Volume 30 (1963)
-
Volume 29 (1962)
-
Volume 28 (1962)
-
Volume 27 (1962)
-
Volume 26 (1961)
-
Volume 25 (1961)
-
Volume 24 (1961)
-
Volume 23 (1960)
-
Volume 22 (1960)
-
Volume 21 (1959)
-
Volume 20 (1959)
-
Volume 19 (1958)
-
Volume 18 (1958)
-
Volume 17 (1957)
-
Volume 16 (1957)
-
Volume 15 (1956)
-
Volume 14 (1956)
-
Volume 13 (1955)
-
Volume 12 (1955)
-
Volume 11 (1954)
-
Volume 10 (1954)
-
Volume 9 (1953)
-
Volume 8 (1953)
-
Volume 7 (1952)
-
Volume 6 (1952)
-
Volume 5 (1951)
-
Volume 4 (1950)
-
Volume 3 (1949)
-
Volume 2 (1948)
-
Volume 1 (1947)
Most Read This Month
