1887

Abstract

A highly conserved cryptic plasmid is present in yet naturally occurring plasmid-deficient isolates are very rare. This paper describes the isolation and characterization of a plasmid-deficient strain of , using novobiocin as a curing agent. Plasmid-deficient derivatives of strain Nigg were generated at high efficiencies (4–30 %). Phenotypic characterization revealed that the cured derivative was unable to accumulate glycogen within intracytoplasmic inclusions. In addition, this strain formed small plaques at a reduced efficiency compared to the wild-type parent.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.28658-0
2006-06-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/152/6/1601.html?itemId=/content/journal/micro/10.1099/mic.0.28658-0&mimeType=html&fmt=ahah

References

  1. Banks, J., Eddie, B., Schachter, J. & Meyer, K. F. ( 1970; ). Plaque formation by Chlamydia in L cells. Infect Immun 1, 259–262.
    [Google Scholar]
  2. Belland, R. J., Zhong, G., Crane, D. D., Hogan, D., Sturdevant, D., Sharma, J., Beatty, W. L. & Caldwell, H. D. ( 2003; ). Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc Natl Acad Sci U S A 100, 8478–8483.[CrossRef]
    [Google Scholar]
  3. Carabeo, R. A. & Hackstadt, T. ( 2001; ). Isolation and characterization of a mutant Chinese hamster ovary cell line that is resistant to Chlamydia trachomatis infection at a novel step in the attachment process. Infect Immun 69, 5899–5904.[CrossRef]
    [Google Scholar]
  4. Carlson, J. H., Porcella, S. F., McClarty, G. & Caldwell, H. D. ( 2005; ). Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains. Infect Immun 73, 6407–6418.[CrossRef]
    [Google Scholar]
  5. Chen, J. C. & Stephens, R. S. ( 1997; ). Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells. Microb Pathog 22, 23–30.[CrossRef]
    [Google Scholar]
  6. Comanducci, M., Cevenini, R., Moroni, A., Giuliani, M. M., Ricci, S., Scarlato, V. & Ratti, G. ( 1993; ). Expression of a plasmid gene of Chlamydia trachomatis encoding a novel 28 kDa antigen. J Gen Microbiol 139, 1083–1092.[CrossRef]
    [Google Scholar]
  7. Davis, C. H., Raulston, J. E. & Wyrick, P. B. ( 2002; ). Protein disulfide isomerase, a component of the estrogen receptor complex, is associated with Chlamydia trachomatis serovar E attached to human endometrial epithelial cells. Infect Immun 70, 3413–3418.[CrossRef]
    [Google Scholar]
  8. Dean, D., Oudens, E., Bolan, G., Padian, N. & Schachter, J. ( 1995; ). Major outer membrane protein variants of Chlamydia trachomatis are associated with severe upper genital tract infections and histopathology in San Francisco. J Infect Dis 172, 1013–1022.[CrossRef]
    [Google Scholar]
  9. Fahr, M. J., Sriprakash, K. S. & Hatch, T. P. ( 1992; ). Convergent and overlapping transcripts of the Chlamydia trachomatis 7.5-kb plasmid. Plasmid 28, 247–257.[CrossRef]
    [Google Scholar]
  10. Farencena, A., Comanducci, M., Donati, M., Ratti, G. & Cevenini, R. ( 1997; ). Characterization of a new isolate of Chlamydia trachomatis which lacks the common plasmid and has properties of biovar trachoma. Infect Immun 65, 2965–2969.
    [Google Scholar]
  11. Gado, I., Toth, I. & Szvoboda, G. ( 1987; ). Curing of plasmid pE194 with novobiocin and coumermycin A1 in Bacillus subtilis and Staphylococcus aureus. Zentralbl Bakteriol Mikrobiol Hyg A 265, 136–145.
    [Google Scholar]
  12. Hooper, D. C., Wolfson, J. S., McHugh, G. L., Swartz, M. D., Tung, C. & Swartz, M. N. ( 1984; ). Elimination of plasmid pMG110 from Escherichia coli by novobiocin and other inhibitors of DNA gyrase. Antimicrob Agents Chemother 25, 586–590.[CrossRef]
    [Google Scholar]
  13. Hussy, P., Maass, G., Tummler, B., Grosse, F. & Schomburg, U. ( 1986; ). Effect of 4-quinolones and novobiocin on calf thymus DNA polymerase alpha primase complex, topoisomerases I and II, and growth of mammalian lymphoblasts. Antimicrob Agents Chemother 29, 1073–1078.[CrossRef]
    [Google Scholar]
  14. Kalman, S., Mitchell, W., Marathe, R. & 7 other authors ( 1999; ). Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21, 385–389.[CrossRef]
    [Google Scholar]
  15. Kelly, K. A., Robinson, E. A. & Rank, R. G. ( 1996; ). Initial route of antigen administration alters the T-cell cytokine profile produced in response to the mouse pneumonitis biovar of Chlamydia trachomatis following genital infection. Infect Immun 64, 4976–4983.
    [Google Scholar]
  16. Lee, C. K. ( 1981; ). Interaction between a trachoma strain of Chlamydia trachomatis and mouse fibroblasts (McCoy cells) in the absence of centrifugation. Infect Immun 31, 584–591.
    [Google Scholar]
  17. Lusher, M., Storey, C. C. & Richmond, S. J. ( 1989; ). Plasmid diversity within the genus Chlamydia. J Gen Microbiol 135 (Pt 5), 1145–1151.
    [Google Scholar]
  18. Luttinger, A. ( 1995; ). The twisted ‘life’ of DNA in the cell: bacterial topoisomerases. Mol Microbiol 15, 601–606.
    [Google Scholar]
  19. Matsumoto, A., Izutsu, H., Miyashita, N. & Ohuchi, M. ( 1998; ). Plaque formation by and plaque cloning of Chlamydia trachomatis biovar trachoma. J Clin Microbiol 36, 3013–3019.
    [Google Scholar]
  20. McClenaghan, M., Honeycombe, J. R., Bevan, B. J. & Herring, A. J. ( 1988; ). Distribution of plasmid sequences in avian and mammalian strains of Chlamydia psittaci. J Gen Microbiol 134, 559–565.
    [Google Scholar]
  21. Miyashita, N., Matsumoto, A. & Matsushima, T. ( 2000; ). In vitro susceptibility of 7.5-kb common plasmid-free Chlamydia trachomatis strains. Microbiol Immunol 44, 267–269.[CrossRef]
    [Google Scholar]
  22. Nigg, C. ( 1942; ). An unidentified virus which produces pneumonia and systemic infection in mice. Science 95, 49–50.
    [Google Scholar]
  23. O'Connell, C. M. C. & Maurelli, A. T. ( 1998; ). Introduction of Foreign DNA into Chlamydia and Stable Expression of Chloramphenicol Resistance, pp. 519–522. San Francisco, CA: International Chlamydial Symposium.
  24. Pearce, J. H., Allan, I. & Ainsworth, S. ( 1981; ). Interaction of chlamydiae with host cells and mucous surfaces. Ciba Found Symp 80, 234–249.
    [Google Scholar]
  25. Pearce, B. J., Fahr, M. J., Hatch, T. P. & Sriprakash, K. S. ( 1991; ). A chlamydial plasmid is differentially transcribed during the life cycle of Chlamydia trachomatis. Plasmid 26, 116–122.[CrossRef]
    [Google Scholar]
  26. Peterson, E. M., Markoff, B. A., Schachter, J. & De La Maza, L. M. ( 1990; ). The 7.5-kb plasmid present in Chlamydia trachomatis is not essential for the growth of this microorganism. Plasmid 23, 144–148.[CrossRef]
    [Google Scholar]
  27. Pickett, M. A., Everson, J. S., Pead, P. J. & Clarke, I. N. ( 2005; ). The plasmids of Chlamydia trachomatis and Chlamydophila pneumoniae (N16): accurate determination of copy number and the paradoxical effect of plasmid-curing agents. Microbiology 151, 893–903.[CrossRef]
    [Google Scholar]
  28. Read, T. D., Brunham, R. C., Shen, C. & 22 other authors ( 2000; ). Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28, 1397–1406.[CrossRef]
    [Google Scholar]
  29. Read, T. D., Myers, G. S., Brunham, R. C. & 18 other authors ( 2003; ). Genome sequence of Chlamydiophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae. Nucleic Acids Res 31, 2134–2147.[CrossRef]
    [Google Scholar]
  30. Rota, T. R. ( 1977; ). Chlamydia trachomatis in cell culture. II. Susceptibility of seven established mammalian cell types in vitro. Adaptation of trachoma organisms to McCoy and BHK-21 cells. In Vitro 13, 280–292.[CrossRef]
    [Google Scholar]
  31. Schachter, J. & Dawson, C. R. ( 1978; ). Laboratory diagnosis. In Human Chlamydial Infections, pp. 181–220. Littleton, MA: PSG Publishing Co.
  32. Stephens, R. S., Kalman, S. & Lammel, C. ( 1998; ). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759.[CrossRef]
    [Google Scholar]
  33. Stothard, D. R., Williams, J. A., Van Der Pol, B. & Jones, R. B. ( 1998; ). Identification of a Chlamydia trachomatis serovar E urogenital isolate which lacks the cryptic plasmid. Infect Immun 66, 6010–6013.
    [Google Scholar]
  34. Tam, J. E., Davis, C. H., Thresher, R. J. & Wyrick, P. B. ( 1992; ). Location of the origin of replication for the 7.5-kb Chlamydia trachomatis plasmid. Plasmid 27, 231–236.[CrossRef]
    [Google Scholar]
  35. Thomas, N. S., Lusher, M., Storey, C. C. & Clarke, I. N. ( 1997; ). Plasmid diversity in Chlamydia. Microbiology 143, 1847–1854.[CrossRef]
    [Google Scholar]
  36. Tropp, B. E., Ragolia, L., Xia, W., Dowhan, W., Milkman, R., Rudd, K. E., Ivanisevic, R. & Savic, D. J. ( 1995; ). Identity of the Escherichia coli cls and nov genes. J Bacteriol 177, 5155–5157.
    [Google Scholar]
  37. Wolfson, J. S., Hooper, D. C., Swartz, M. N., Swartz, M. D. & McHugh, G. L. ( 1983; ). Novobiocin-induced elimination of F′lac and mini-F plasmids from Escherichia coli. J Bacteriol 156, 1165–1170.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.28658-0
Loading
/content/journal/micro/10.1099/mic.0.28658-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error