- Volume 95, Issue 11, 2014
Volume 95, Issue 11, 2014
- Review
-
-
-
Laboratory animal models to study foot-and-mouth disease: a review with emphasis on natural and vaccine-induced immunity
Laboratory animal models have provided valuable insight into foot-and-mouth disease virus (FMDV) pathogenesis in epidemiologically important target species. While not perfect, these models have delivered an accelerated time frame to characterize the immune responses in natural hosts and a platform to evaluate therapeutics and vaccine candidates at a reduced cost. Further expansion of these models in mice has allowed access to genetic mutations not available for target species, providing a powerful and versatile experimental system to interrogate the immune response to FMDV and to target more expensive studies in natural hosts. The purpose of this review is to describe commonly used FMDV infection models in laboratory animals and to cite examples of when these models have failed or successfully provided insight relevant for target species, with an emphasis on natural and vaccine-induced immunity.
-
-
-
-
Cell-to-cell transfer of HIV infection: implications for HIV viral persistence
More LessA major research priority for HIV eradication is the elucidation of the events involved in HIV reservoir establishment and persistence. Cell-to-cell transmission of HIV represents an important area of study as it allows for the infection of cell types which are not easily infected by HIV, leading to the establishment of long-lived viral reservoirs. This phenomenon enables HIV to escape elimination by the immune system. This process may also enable HIV to escape suppressive effects of anti-retroviral drugs. During cell-to-cell transmission of HIV, a dynamic series of events ensues at the virological synapse that promotes viral dissemination. Cell-to-cell transmission involves various types of cells of the immune system and this mode of transmission has been shown to have an important role in sexual and mother-to-child transmission of HIV and spread of HIV within the central nervous system and gut-associated lymphoid tissues. There is also evidence that cell-to-cell transmission of HIV occurs between thymocytes and renal tubular cells. Herein, following a brief review of the processes involved at the virological synapse, evidence supporting the role for cell-to-cell transmission of HIV in the maintenance of the HIV reservoir will be highlighted. Therapeutic considerations and future directions for this area of research will also be discussed.
-
- Animal
-
- RNA viruses
-
-
Acute hantavirus infection induces galectin-3-binding protein
Hantaviruses are zoonotic viruses that cause life-threatening diseases when transmitted to humans. Severe hantavirus infection is manifested by impairment of renal function, pulmonary oedema and capillary leakage. Both innate and adaptive immune responses contribute to the pathogenesis, but the underlying mechanisms are not fully understood. Here, we showed that galectin-3-binding protein (Gal-3BP) was upregulated as a result of hantavirus infection both in vitro and in vivo. Gal-3BP is a secreted glycoprotein found in human serum, and increased Gal-3BP levels have been reported in chronic viral infections and in several types of cancer. Our in vitro experiments showed that, whilst Vero E6 cells (an African green monkey kidney cell line) constitutively expressed and secreted Gal-3BP, this protein was detected in primary human cells only as a result of hantavirus infection. Analysis of Gal-3BP levels in serum samples of cynomolgus macaques infected experimentally with hantavirus indicated that hantavirus infection induced Gal-3BP also in vivo. Finally, analysis of plasma samples collected from patients hospitalized because of acute hantavirus infection showed higher Gal-3BP levels during the acute than the convalescent phase. Furthermore, the Gal-3BP levels in patients with haemorrhagic fever with renal syndrome correlated with increased complement activation and with clinical variables reflecting the severity of acute hantavirus infection.
-
-
-
Neuraminidase gene homology contributes to the protective activity of influenza vaccines prepared from the influenza virus library
Whole-virus (WV) vaccines from influenza A/duck/Hokkaido/77 (H3N2), and its reassortant strains H3N4, H3N5 and H3N7, which have the same haemagglutinin (HA) gene but different neuraminidase (NA) genes, were prepared from our influenza virus library. Mice were intranasally immunized with equivalent doses of each vaccine (1–0.01 µg per mouse). All of the mice that received the highest dose of each vaccine (1 µg per mouse) showed equivalent high HA-inhibiting (HI) antibody titres and survived the H3N2 challenge viruses. However, mice that received lower doses of vaccine (0.1 or 0.01 µg per mouse) containing a heterologous NA had lower survival rates than those given the H3N2-based vaccine. The lungs of mice challenged with H3N2 virus showed a significantly higher virus clearance rate when the vaccine contained the homologous NA (N2) versus a heterologous NA, suggesting that NA contributed to the protection, especially when the HI antibody level was low. These results suggested that, even if vaccines prepared for a possible upcoming pandemic do not induce sufficient HI antibodies, WV vaccines can still be effective through other matched proteins such as NA.
-
-
-
Origin of the European avian-like swine influenza viruses
The avian-like swine influenza viruses emerged in 1979 in Belgium and Germany. Thereafter, they spread through many European swine-producing countries, replaced the circulating classical swine H1N1 influenza viruses, and became endemic. Serological and subsequent molecular data indicated an avian source, but details remained obscure due to a lack of relevant avian influenza virus sequence data. Here, the origin of the European avian-like swine influenza viruses was analysed using a collection of 16 European swine H1N1 influenza viruses sampled in 1979–1981 in Germany, the Netherlands, Belgium, Italy and France, as well as several contemporaneous avian influenza viruses of various serotypes. The phylogenetic trees suggested a triple reassortant with a unique genotype constellation. Time-resolved maximum clade credibility trees indicated times to the most recent common ancestors of 34–46 years (before 2008) depending on the RNA segment and the method of tree inference.
-
-
-
Epitope mapping of the 2009 pandemic and the A/Brisbane/59/2007 seasonal (H1N1) influenza virus haemagglutinins using mAbs and escape mutants
More LessmAbs constitute an important biological tool for influenza virus haemagglutinin (HA) epitope mapping through the generation of escape mutants, which could provide insights into immune evasion mechanisms and may benefit the future development of vaccines. Several influenza A (H1N1) pandemic 2009 (pdm09) HA escape mutants have been recently described. However, the HA antigenic sites of the previous seasonal A/Brisbane/59/2007 (H1N1) (Bris07) virus remain poorly documented. Here, we produced mAbs against pdm09 and Bris07 HA proteins expressed in human HEK293 cells. Escape mutants were generated using mAbs that exhibited HA inhibition and neutralizing activities. The resulting epitope mapping of the pdm09 HA protein revealed 11 escape mutations including three that were previously described (G172E, N173D and K256E) and eight novel ones (T89R, F128L, G157E, K180E, A212E, R269K, N311T and G478E). Among the six HA mutations that were part of predicted antigenic sites (Ca1, Ca2, Cb, Sa or Sb), three (G172E, N173D and K180E) were within the Sa site. Eight escape mutations (H54N, N55D, N55K, L60H, N203D, A231T, V314I and K464E) were obtained for Bris07 HA, and all but one (N203D, Sb site) were outside the predicted antigenic sites. Our results suggest that the Sa antigenic site is immunodominant in pdm09 HA, whereas the N203D mutation (Sb site), present in three different Bris07 escape mutants, appears as the immunodominant epitope in that strain. The fact that some mutations were not part of predicted antigenic sites reinforces the necessity of further characterizing the HA of additional H1N1 strains.
-
-
-
Evolutionary dynamics and genetic diversity from three genes of Anguillid rhabdovirus
Wild freshwater eel populations have dramatically declined in recent past decades in Europe and America, partially through the impact of several factors including the wide spread of infectious diseases. The anguillid rhabdoviruses eel virus European X (EVEX) and eel virus American (EVA) potentially play a role in this decline, even if their real contribution is still unclear. In this study, we investigate the evolutionary dynamics and genetic diversity of anguiillid rhabdoviruses by analysing sequences from the glycoprotein, nucleoprotein and phosphoprotein (P) genes of 57 viral strains collected from seven countries over 40 years using maximum-likelihood and Bayesian approaches. Phylogenetic trees from the three genes are congruent and allow two monophyletic groups, European and American, to be clearly distinguished. Results of nucleotide substitution rates per site per year indicate that the P gene is expected to evolve most rapidly. The nucleotide diversity observed is low (2–3 %) for the three genes, with a significantly higher variability within the P gene, which encodes multiple proteins from a single genomic RNA sequence, particularly a small C protein. This putative C protein is a potential molecular marker suitable for characterization of distinct genotypes within anguillid rhabdoviruses. This study provides, to our knowledge, the first molecular characterization of EVA, brings new insights to the evolutionary dynamics of two genotypes of Anguillid rhabdovirus, and is a baseline for further investigations on the tracking of its spread.
-
-
-
Sequence adaptations affecting cleavage of the VP1/2A junction by the 3C protease in foot-and-mouth disease virus-infected cells
More LessThe foot-and-mouth disease virus (FMDV) capsid protein precursor P1-2A is cleaved by the virus-encoded 3C protease to VP0, VP3, VP1 and 2A. It was shown previously that modification of a single amino acid residue (K210E) within the VP1 protein and close to the VP1/2A cleavage site, inhibited cleavage of this junction and produced ‘self-tagged’ virus particles. A second site substitution (E83K) within VP1 was also observed within the rescued virus [Gullberg et al. (2013). J Virol 87, 11591–11603]. It was shown here that introduction of this E83K change alone into a serotype O virus resulted in the rapid accumulation of a second site substitution within the 2A sequence (L2P), which also blocked VP1/2A cleavage. This suggests a linkage between the E83K change in VP1 and cleavage of the VP1/2A junction. Cells infected with viruses containing the VP1 K210E or the 2A L2P substitutions contained the uncleaved VP1-2A protein. The 2A L2P substitution resulted in the VP1/2A junction being highly resistant to cleavage by the 3C protease, hence it may be a preferred route for ‘tagging’ virus particles.
-
-
-
Infection and injury of human astrocytes by tick-borne encephalitis virus
Tick-borne encephalitis (TBE), a disease caused by tick-borne encephalitis virus (TBEV), represents the most important flaviviral neural infection in Europe and north-eastern Asia. In the central nervous system (CNS), neurons are the primary target for TBEV infection; however, infection of non-neuronal CNS cells, such as astrocytes, is not well understood. In this study, we investigated the interaction between TBEV and primary human astrocytes. We report for the first time, to the best of our knowledge, that primary human astrocytes are sensitive to TBEV infection, although the infection did not affect their viability. The infection induced a marked increase in the expression of glial fibrillary acidic protein, a marker of astrocyte activation. In addition, expression of matrix metalloproteinase 9 and several key pro-inflammatory cytokines/chemokines (e.g. tumour necrosis factor α, interferon α, interleukin (IL)-1β, IL-6, IL-8, interferon γ-induced protein 10, macrophage inflammatory protein, but not monocyte chemotactic protein 1) was upregulated. Moreover, we present a detailed description of morphological changes in TBEV-infected cells, as investigated using three-dimensional electron tomography. Several novel ultrastructural changes were observed, including the formation of unique tubule-like structures of 17.9 ±0.15 nm diameter with associated viral particles and/or virus-induced vesicles and located in the rough endoplasmic reticulum of the TBEV-infected cells. This is the first demonstration that TBEV infection activates primary human astrocytes. The infected astrocytes might be a potential source of pro-inflammatory cytokines in the TBEV-infected brain, and might contribute to the TBEV-induced neurotoxicity and blood–brain barrier breakdown that occurs during TBE. The neuropathological significance of our observations is also discussed.
-
-
-
NS2 is dispensable for efficient assembly of hepatitis C virus-like particles in a bipartite trans-encapsidation system
More LessInfectious hepatitis C virus (HCV) particle production in the genotype 2a JFH-1-based cell culture system involves non-structural proteins in addition to canonical virion components. NS2 has been proposed to act as a protein adaptor, co-ordinating the early stages of virion assembly. However, other studies have identified late-acting roles for this protein, making its precise involvement in infectious particle production unclear. Using a robust, bipartite trans-encapsidation system based upon baculovirus expression of HCV structural proteins, we have generated HCV-like particles (HCV-LP) in the absence of NS2 with overt similarity to wild-type virions. HCV-LP could transduce naive cells with trans-encapsidated subgenomic replicon RNAs and shared similar biochemical and biophysical properties with JFH-1 HCV. Both genotype 1b and JFH-1 intracellular HCV-LP were produced in the absence of NS2, whereas restoring NS2 to the JFH-1 system dramatically enhanced secreted infectivity, consistent with a late-acting role. Our system recapitulated authentic HCV particle assembly via trans-complementation of bicistronic, NS2-deleted, chimeric HCV, which is otherwise deficient in particle production. This closely resembled replicon-mediated NS2 trans-complementation, confirming that baculovirus expression of HCV proteins did not unduly affect particle production. Furthermore, this suggests that separation of structural protein expression from replicating HCV RNAs that are destined to be packaged alleviates an early stage requirement for NS2 during particle formation. This highlights our current lack of understanding of how NS2 mediates assembly, yet comparison of full-length and bipartite systems may provide further insight into this process.
-
-
-
Detection of diverse novel astroviruses from small mammals in China
Astroviruses infect humans and many animal species and cause gastroenteritis. To extensively understand the distribution and genetic diversity of astrovirus in small mammals, we tested 968 anal swabs from 39 animal species, most of which were bats and rodents. We detected diverse astroviruses in 10 bat species, including known bat astroviruses and a large number of novel viruses. Meanwhile, novel groups of astroviruses were identified in three wild rodent species and a remarkably high genetic diversity of astrovirus was revealed in Eothenomys cachinus. We detected astroviruses in captive-bred porcupines and a nearly full-length genome sequence was determined for one strain. Phylogenetic analysis of the complete ORF2 sequence suggested that this strain may share a common ancestor with porcine astrovirus type 2. Moreover, to our knowledge, this study reports the first discovery of astroviruses in shrews and pikas. Our results provide new insights for understanding these small mammals as natural reservoirs of astroviruses.
-
-
-
Critical role for bone marrow stromal antigen 2 in acute Chikungunya virus infection
More LessBone marrow stromal antigen 2 (BST-2; also known as tetherin or CD317) is an IFN-inducible gene that functions to block the release of a range of nascent enveloped virions from infected host cells. However, the role of BST-2 in viral pathogenesis remains poorly understood. BST-2 plays a multifaceted role in innate immunity, as it hinders retroviral infection and possibly promotes infection with some rhabdo- and orthomyxoviruses. This paradoxical role has probably hindered exploration of BST-2 antiviral function in vivo. We reported previously that BST-2 tethers Chikungunya virus (CHIKV)-like particles on the cell plasma membrane. To explore the role of BST-2 in CHIKV replication and host protection, we utilized CHIKV strain 181/25 to examine early events during CHIKV infection in a BST-2−/− mouse model. We observed an interesting dichotomy between WT and BST-2−/− mice. BST-2 deficiency increased inoculation site viral load, culminating in higher systemic viraemia and increased lymphoid tissues tropism. A suppressed inflammatory innate response demonstrated by impaired expression of IFN-α, IFN-γ and CD40 ligand was observed in BST-2−/− mice compared with the WT controls. These findings suggested that, in part, BST-2 protects lymphoid tissues from CHIKV infection and regulates CHIKV-induced inflammatory response by the host.
-
-
-
Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons
Reverse genetics is a key methodology for producing genetically modified RNA viruses and deciphering cellular and viral biological properties, but methods based on the preparation of plasmid-based complete viral genomes are laborious and unpredictable. Here, both wild-type and genetically modified infectious RNA viruses were generated in days using the newly described ISA (infectious-subgenomic-amplicons) method. This new versatile and simple procedure may enhance our capacity to obtain infectious RNA viruses from PCR-amplified genetic material.
-
-
-
Endocannabinoid CB1 antagonists inhibit hepatitis C virus production, providing a novel class of antiviral host-targeting agents
Direct-acting antivirals have significantly improved treatment outcomes in chronic hepatitis C (CHC), but side effects, drug resistance and cost mean that better treatments are still needed. Lipid metabolism is closely linked with hepatitis C virus (HCV) replication, and endocannabinoids are major regulators of lipid homeostasis. The cannabinoid 1 (CB1) receptor mediates these effects in the liver. We have previously shown upregulation of CB1 receptors in the livers of patients with CHC, and in a HCV cell-culture model. Here, we investigated whether CB1 blockade inhibited HCV replication. The antiviral effect of a CB1 antagonist, N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), was examined in HCV strain JFH1 cell-culture and subgenomic replicon models. The effects on the expression of genes involved in lipid metabolism were also measured. CB1 short hairpin RNA (shRNA) was used to confirm that the effects were specific for the cannabinoid receptor. Treatment with AM251 strongly inhibited HCV RNA (~70 %), viral protein (~80 %), the production of new virus particles (~70 %) and virus infectivity (~90 %). As expected, AM251 reduced the expression of pro-lipogenic genes (SREBP-1c, FASN, SCD1 and ACC1) and stimulated genes promoting lipid oxidation (CPT1 and PPARα). This effect was mediated by AMP-activated protein kinase (AMPK). Stable CB1 knockdown of cells infected with HCV showed reduced levels of HCV RNA compared with controls. Thus, reduced CB1 signalling inhibits HCV replication using either pharmacological inhibitors or CB1 shRNA. This may be due, at least in part, to reduced lipogenesis, mediated by AMPK activation. We suggest that CB1 antagonists may represent an entirely new class of drug with activity against HCV.
-
-
-
Novel divergent nidovirus in a python with pneumonia
The order Nidovirales contains large, enveloped viruses with a non-segmented positive-stranded RNA genome. Nidoviruses have been detected in man and various animal species, but, to date, there have been no reports of nidovirus in reptiles. In the present study, we describe the detection, characterization, phylogenetic analyses and disease association of a novel divergent nidovirus in the lung of an Indian python (Python molurus) with necrotizing pneumonia. Characterization of the partial genome (>33 000 nt) of this virus revealed several genetic features that are distinct from other nidoviruses, including a very large polyprotein 1a, a putative ribosomal frameshift signal that was identical to the frameshift signal of astroviruses and retroviruses and an accessory ORF that showed some similarity with the haemagglutinin–neuraminidase of paramyxoviruses. Analysis of genome organization and phylogenetic analysis of polyprotein 1ab suggests that this virus belongs to the subfamily Torovirinae. Results of this study provide novel insights into the genetic diversity within the order Nidovirales.
-
- DNA viruses
-
-
Comparison of porcine circovirus type 2 (PCV2)-associated lesions produced by co-infection between two genotypes of PCV2 and two genotypes of porcine reproductive and respiratory syndrome virus
More LessThe objective of this study was to compare the virulence and pathogenicity of a combination of concurrent infections of two genotypes of porcine circovirus type 2 (PCV2) and two genotypes of porcine reproductive and respiratory syndrome virus (PRRSV) in terms of PCV2 viraemia, and PCV2-associated lesions and antigens in co-infected pigs. Pigs with PCV2a (or 2b)/type 1 (or type 2) PRRSV had significantly (P<0.05) higher mean clinical respiratory scores and lower average daily weight gain compared with pigs with PCV2a (or 2b). Co-infection induced significantly lower levels of anti-PCV2 and anti-PRRSV IgG antibodies than infection with one genotype alone, regardless of the genotype of the two viruses. Pigs with PCV2a (or 2b)/type 2 PRRSV had significantly (P<0.05) higher levels of PCV2 viraemia, more severe PCV2-associated lesions, and more PCV2 DNA within the lesions compared with pigs with PCV2a (or 2b)/type 1 PRRSV. However, there was no significant difference in these parameters in pigs with PCV2a/type 2 PRRSV or PCV2b/type 2 PRRSV. The results of this study demonstrate significant differences in the virulence and pathogenicity of type 1 and type 2 PRRSV but no significant differences in the virulence and pathogenicity of PCV2a and PCV2b with respect to the production of PCV2-associated lesions.
-
-
-
Mutant USA strain of porcine circovirus type 2 (mPCV2) exhibits similar virulence to the classical PCV2a and PCV2b strains in caesarean-derived, colostrum-deprived pigs
In 2012, a mutant porcine circovirus type 2 (mPCV2) strain was identified in cases of PCV-associated disease (PCVAD) in the USA. The mPCV2 had an additional amino acid, lysine (K), in the capsid at position 234. The objectives of this study were to compare the pathogenicity of mPCV2, PCV2a and PCV2b in pigs using biologically pure infectious virus stocks derived from respective infectious DNA clones, and to investigate the importance of genotype-specific ORF2 and the presence of lysine at position 234 of the capsid. A total of 47, 2-week-old, caesarean-derived, colostrum-deprived (CDCD) pigs were assigned to one of seven groups. At 3 weeks of age, the pigs were experimentally inoculated with saline, PCV2a, PCV2b, mPCV2, PCV2b-234-K (lysine addition in ORF2), chimeric PCV2b-ORF1/mPCV2-ORF2 or reciprocal chimeric mPCV2-ORF1/PCV2b-ORF2. All pigs were necropsied 21 days post-infection (p.i.). Gross lesions were limited to visible icterus and loss of body condition in a portion of the mPCV2 pigs. The amount of PCV2 DNA was significantly higher in pigs inoculated with mPCV2 compared with PCV2b in sera at 7 days p.i. and faecal swabs at 14 days p.i. Based on lymphoid lesions, a higher prevalence of PCVAD was seen in pigs infected with PCV2s containing the additional 234-K (64.3 %) compared with those infected with a PCV2 with the regular 233 bp ORF2 (40 %). Results indicated that all PCV2 isolates were capable of inducing severe lesions and disease in the CDCD pig model, and there was no significant difference in virulence.
-
-
-
Analysis of purified Wild type and mutant adenovirus particles by SILAC based quantitative proteomics
More LessWe used SILAC (stable isotope labelling of amino acids in cell culture) and high-throughput quantitative MS mass spectrometry to analyse the protein composition of highly purified WT wild type adenoviruses, mutant adenoviruses lacking an internal protein component (protein V) and recombinant adenoviruses of the type commonly used in gene therapy, including one virus that had been used in a clinical trial. We found that the viral protein abundance and composition were consistent across all types of virus examined except for the virus lacking protein V, which also had reduced amounts of another viral core protein, protein VII. In all the samples analysed we found no evidence of consistent packaging or contamination with cellular proteins. We believe this technique is a powerful method to analyse the protein composition of this important gene therapy vector and genetically engineered or synthetic virus-like particles. The raw data have been deposited at proteomexchange, identifer PXD001120.
-
- Retroviruses
-
-
Genomic sequence analysis and biological characteristics of a rescued clone of avian leukosis virus strain JS11C1, isolated from indigenous chickens
More LessThe strain JS11C1, a member of a putative new subgroup of avian leukosis virus (ALV) that is different from all six known subgroups from chickens based on Gp85 amino acid sequence comparison, was isolated from Chinese native chicken breeds in 2012. In order to further study the genome structure, biological characteristics, and the evolutionary relationship of the virus with others of known subgroups from infected chickens, we determined the complete genome sequence, constructed an infectious clone of ALV strain JS11C1, and performed comparative analysis using the whole genome sequence or elements with that of other ALVs available in GenBank. The results showed that the full-length sequence of the JS11C1 DNA provirus genome was 7707 bp, which is consistent with a genetic organization typical of a replication-competent type C retrovirus lacking viral oncogenes. The rescued infectious clone of JS11C1 showed similar growth rate and biological characteristics to its original virus. All the comparison analyses based on whole genomes support the opinion that the new isolates are relatively distantly related to any known subgroups of ALVs and might be classified as a new subgroup.
-
-
-
Impact of the rtI187V polymerase substitution of hepatitis B virus on viral replication and antiviral drug susceptibility
More LessA high prevalence of the rtI187V polymerase substitution of hepatitis B virus (HBV) was detected in nucleoside/nucleotide-analogue-naive and -treated chronic hepatitis B (CHB) patients. We aimed at assessing the replicative capacity and susceptibility to lamivudine (LAM) and adefovir (ADV) in vitro of HBV harbouring rtI187V alone or in conjunction with LAM- or ADV-resistant mutations. The reverse transcriptase region of HBV isolates was directly sequenced from a cohort of 300 CHB patients from China. Replication-competent HBV constructs containing rtI187V and combined with LAM-resistant (rtM204I, rtL180M/rtM204V) mutations were generated, and compared with WT, LAM-resistant single (rtM204I) or double (rtL180M/rtM204V) and ADV-resistant (rtN236T) clones. In a Chinese cohort of 300 CHB patients, 8.7 % (26/300) showed substitution of rtI187 with V. Of note, the rtI187V prevalence in HBV genotype B was significantly higher than that in HBV genotype C (95.2 vs 4.8 %). In vitro phenotypic assays showed that the viruses bearing the rtI187V substitution had impaired replication efficacy when compared with the WT and the virus carrying rtI187V combined with LAM-resistant single or double mutations showed even more significantly impaired replicative capacities. Furthermore, rtI187V HBV remained susceptible towards treatment with LAM or ADV in vitro whereas the combination of the rtI187V substitution with LAM-resistant mutations rendered HBV resistant to LAM but still sensitive to ADV. Our study revealed that the rtI187V substitution in the HBV polymerase frequently occurred in CHB patients, particularly those with HBV genotype B. However, the emergence of the rtI187V substitution significantly impaired viral replication but without affecting drug sensitivity in vitro.
-
Volumes and issues
-
Volume 106 (2025)
-
Volume 105 (2024)
-
Volume 104 (2023)
-
Volume 103 (2022)
-
Volume 102 (2021)
-
Volume 101 (2020)
-
Volume 100 (2019)
-
Volume 99 (2018)
-
Volume 98 (2017)
-
Volume 97 (2016)
-
Volume 96 (2015)
-
Volume 95 (2014)
-
Volume 94 (2013)
-
Volume 93 (2012)
-
Volume 92 (2011)
-
Volume 91 (2010)
-
Volume 90 (2009)
-
Volume 89 (2008)
-
Volume 88 (2007)
-
Volume 87 (2006)
-
Volume 86 (2005)
-
Volume 85 (2004)
-
Volume 84 (2003)
-
Volume 83 (2002)
-
Volume 82 (2001)
-
Volume 81 (2000)
-
Volume 80 (1999)
-
Volume 79 (1998)
-
Volume 78 (1997)
-
Volume 77 (1996)
-
Volume 76 (1995)
-
Volume 75 (1994)
-
Volume 74 (1993)
-
Volume 73 (1992)
-
Volume 72 (1991)
-
Volume 71 (1990)
-
Volume 70 (1989)
-
Volume 69 (1988)
-
Volume 68 (1987)
-
Volume 67 (1986)
-
Volume 66 (1985)
-
Volume 65 (1984)
-
Volume 64 (1983)
-
Volume 63 (1982)
-
Volume 62 (1982)
-
Volume 61 (1982)
-
Volume 60 (1982)
-
Volume 59 (1982)
-
Volume 58 (1982)
-
Volume 57 (1981)
-
Volume 56 (1981)
-
Volume 55 (1981)
-
Volume 54 (1981)
-
Volume 53 (1981)
-
Volume 52 (1981)
-
Volume 51 (1980)
-
Volume 50 (1980)
-
Volume 49 (1980)
-
Volume 48 (1980)
-
Volume 47 (1980)
-
Volume 46 (1980)
-
Volume 45 (1979)
-
Volume 44 (1979)
-
Volume 43 (1979)
-
Volume 42 (1979)
-
Volume 41 (1978)
-
Volume 40 (1978)
-
Volume 39 (1978)
-
Volume 38 (1978)
-
Volume 37 (1977)
-
Volume 36 (1977)
-
Volume 35 (1977)
-
Volume 34 (1977)
-
Volume 33 (1976)
-
Volume 32 (1976)
-
Volume 31 (1976)
-
Volume 30 (1976)
-
Volume 29 (1975)
-
Volume 28 (1975)
-
Volume 27 (1975)
-
Volume 26 (1975)
-
Volume 25 (1974)
-
Volume 24 (1974)
-
Volume 23 (1974)
-
Volume 22 (1974)
-
Volume 21 (1973)
-
Volume 20 (1973)
-
Volume 19 (1973)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1972)
-
Volume 15 (1972)
-
Volume 14 (1972)
-
Volume 13 (1971)
-
Volume 12 (1971)
-
Volume 11 (1971)
-
Volume 10 (1971)
-
Volume 9 (1970)
-
Volume 8 (1970)
-
Volume 7 (1970)
-
Volume 6 (1970)
-
Volume 5 (1969)
-
Volume 4 (1969)
-
Volume 3 (1968)
-
Volume 2 (1968)
-
Volume 1 (1967)